Echo-evolution data generation for quantum error mitigation via neural networks

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2024-12-13 DOI:10.1007/s11128-024-04603-7
Danila Babukhin
{"title":"Echo-evolution data generation for quantum error mitigation via neural networks","authors":"Danila Babukhin","doi":"10.1007/s11128-024-04603-7","DOIUrl":null,"url":null,"abstract":"<div><p>Neural networks provide a prospective tool for error mitigation in quantum simulation of physical systems. However, we need both noisy and noise-free data to train neural networks to mitigate errors in quantum computing results. Here, we propose a physics-motivated method to generate training data for quantum error mitigation via neural networks, which does not require classical simulation and target circuit simplification. In particular, we propose to use the echo evolution of a quantum system to collect noisy and noise-free data for training a neural network. Under this method, the initial state evolves forward and backward in time, returning to the initial state at the end of evolution. When run on a noisy quantum processor, the resulting state will be affected by the quantum noise accumulated during evolution. Having a vector of observable values of the initial (noise-free) state and the resulting (noisy) state allows us to compose training data for a neural network. We demonstrate that a feed-forward fully connected neural network trained on echo-evolution-generated data can correct results of forward-in-time evolution. Our findings can enhance the application of neural networks to error mitigation in quantum computing.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04603-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks provide a prospective tool for error mitigation in quantum simulation of physical systems. However, we need both noisy and noise-free data to train neural networks to mitigate errors in quantum computing results. Here, we propose a physics-motivated method to generate training data for quantum error mitigation via neural networks, which does not require classical simulation and target circuit simplification. In particular, we propose to use the echo evolution of a quantum system to collect noisy and noise-free data for training a neural network. Under this method, the initial state evolves forward and backward in time, returning to the initial state at the end of evolution. When run on a noisy quantum processor, the resulting state will be affected by the quantum noise accumulated during evolution. Having a vector of observable values of the initial (noise-free) state and the resulting (noisy) state allows us to compose training data for a neural network. We demonstrate that a feed-forward fully connected neural network trained on echo-evolution-generated data can correct results of forward-in-time evolution. Our findings can enhance the application of neural networks to error mitigation in quantum computing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
A secure authenticated semi-quantum key distribution scheme for semi-quantum environments Parrondo’s paradox in quantum walks with different shift operators Non-Markovianity in discrete-time open quantum random walk on arbitrary graphs Electrically driven and exponentially enhanced spin–photon interfaces for quantum networks Echo-evolution data generation for quantum error mitigation via neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1