A novel 3D-printed clamping interface for the tensile testing of biological specimens

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2025-01-01 DOI:10.1016/j.jbiomech.2024.112457
Madalena Antunes, Sérgio B. Gonçalves, Carlos Quental, Virgínia Infante, João Folgado
{"title":"A novel 3D-printed clamping interface for the tensile testing of biological specimens","authors":"Madalena Antunes,&nbsp;Sérgio B. Gonçalves,&nbsp;Carlos Quental,&nbsp;Virgínia Infante,&nbsp;João Folgado","doi":"10.1016/j.jbiomech.2024.112457","DOIUrl":null,"url":null,"abstract":"<div><div>A novel 3D-printed clamping interface was designed to address challenges associated with the tensile testing of soft biological tissues, particularly specimen slippage and failure at the grips. To improve specimen adherence, four contact patterns, based on retrograde teeth, serrated, atraumatic wavy teeth, and flower patterns, were added to the interface surface. A smooth transition was considered to diminish the likelihood of transverse cutting of specimens. The 3D-printed clamping interface was produced using additive manufacturing. We performed tensile tests on porcine skin specimens considering the original serrated jaw faces (reference condition), the jaw faces with sandpaper, and the 3D-printed clamping interface with and without contact patterns. The maximum force supported by the specimens (before slippage or failure), for each test condition, was compared using statistical analysis (statistical level of <em>p</em> &lt; 0.05). Compared to the reference condition (148.50 ± 31.71 N), we observed significant improvements for the 3D-printed clamping interface with the retrograde teeth (247.41 ± 31.17 N, <em>p</em> ≤ 0.001) and flower (220.40 ± 19.86 N, <em>p</em> = 0.004) contact patterns. In the reference condition, failure mostly occurred at the grips. The use of the 3D-printed clamping interface reduced the spreading of the fibers, promoting failure within the gauge section. Additionally, we observed a reduction in tissue damage at the grips for the flower and atraumatic wavy teeth conditions. In conclusion, the proposed 3D-printed clamping interface significantly improved the adherence of the porcine skin specimens while promoting failure within the gauge section. This approach can be easily customized to the available grips, has a low-cost and fast production, and uses easily accessible technology.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"179 ","pages":"Article 112457"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024005360","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel 3D-printed clamping interface was designed to address challenges associated with the tensile testing of soft biological tissues, particularly specimen slippage and failure at the grips. To improve specimen adherence, four contact patterns, based on retrograde teeth, serrated, atraumatic wavy teeth, and flower patterns, were added to the interface surface. A smooth transition was considered to diminish the likelihood of transverse cutting of specimens. The 3D-printed clamping interface was produced using additive manufacturing. We performed tensile tests on porcine skin specimens considering the original serrated jaw faces (reference condition), the jaw faces with sandpaper, and the 3D-printed clamping interface with and without contact patterns. The maximum force supported by the specimens (before slippage or failure), for each test condition, was compared using statistical analysis (statistical level of p < 0.05). Compared to the reference condition (148.50 ± 31.71 N), we observed significant improvements for the 3D-printed clamping interface with the retrograde teeth (247.41 ± 31.17 N, p ≤ 0.001) and flower (220.40 ± 19.86 N, p = 0.004) contact patterns. In the reference condition, failure mostly occurred at the grips. The use of the 3D-printed clamping interface reduced the spreading of the fibers, promoting failure within the gauge section. Additionally, we observed a reduction in tissue damage at the grips for the flower and atraumatic wavy teeth conditions. In conclusion, the proposed 3D-printed clamping interface significantly improved the adherence of the porcine skin specimens while promoting failure within the gauge section. This approach can be easily customized to the available grips, has a low-cost and fast production, and uses easily accessible technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于生物标本拉伸测试的新型3d打印夹紧界面。
一种新型的3d打印夹紧界面被设计用于解决与软生物组织的拉伸测试相关的挑战,特别是试样滑移和握把失效。为了提高试样的粘附性,在界面表面添加了四种接触模式,分别是逆行齿、锯齿形、无创伤波形齿和花形。一个平稳的过渡被认为是减少横向切割标本的可能性。采用增材制造技术生产3d打印夹紧界面。我们对猪皮肤样品进行了拉伸试验,考虑了原始锯齿颌面(参考条件)、带有砂纸的颌面以及3d打印的夹紧界面有和没有接触模式。在每种试验条件下,试件(滑移或破坏前)所承受的最大力采用统计分析进行比较(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Validation of speckle tracking analysis for assessing fascia sliding mobility Morphology and computational fluid dynamics support a novel classification of Spontaneous isolated superior mesenteric artery dissection Identification of a spatially distributed diffusion model for simulation of temporal cellular growth A calibrated EMG-informed neuromusculoskeletal model can estimate hip and knee joint contact forces in cycling better than static optimisation A mechanically consistent muscle model shows that the maximum force-generating capacity of muscles is influenced by optimal fascicle length and muscle shape
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1