Framework nucleic acid strategy enables closer microbial contact for programming short-range interaction.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-12-13 Epub Date: 2024-12-11 DOI:10.1126/sciadv.adr4399
Na Chen, Jing Xi, Na Du, Ruichen Shen, Rui Zhao, Wei He, Tianhuang Peng, Yanbing Yang, Yun Zhang, Lilei Yu, Weihong Tan, Quan Yuan
{"title":"Framework nucleic acid strategy enables closer microbial contact for programming short-range interaction.","authors":"Na Chen, Jing Xi, Na Du, Ruichen Shen, Rui Zhao, Wei He, Tianhuang Peng, Yanbing Yang, Yun Zhang, Lilei Yu, Weihong Tan, Quan Yuan","doi":"10.1126/sciadv.adr4399","DOIUrl":null,"url":null,"abstract":"<p><p>Programming precise and specific microbial intraspecies or interspecies interaction would be powerful for microbial metabolic regulation, signal pathway mechanism understanding, and therapeutic application. However, it is still of great challenge to develop a simple and universal method to artificially encode the microbial interactions without interfering with the intrinsic cell metabolism. Here, we proposed an extensible and flexible framework nucleic acid strategy for encoding the specific and precise microbial interactions upon self-assembly. With this spatial manipulation tool, we propose the microbial spatial heterogeneity and short-range interaction mechanism that the microbial assembly facilitates the gene expressions of the surface sensors including flagella and pili in <i>Pseudomonas aeruginosa</i>, leading to a more sensitive response to quorum sensing. The microbial interaction programming strategy proposed in this work is expected to provide a powerful and designable nanoplatform for better understanding of distance-dependent bacterial communication networks.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 50","pages":"eadr4399"},"PeriodicalIF":11.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr4399","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Programming precise and specific microbial intraspecies or interspecies interaction would be powerful for microbial metabolic regulation, signal pathway mechanism understanding, and therapeutic application. However, it is still of great challenge to develop a simple and universal method to artificially encode the microbial interactions without interfering with the intrinsic cell metabolism. Here, we proposed an extensible and flexible framework nucleic acid strategy for encoding the specific and precise microbial interactions upon self-assembly. With this spatial manipulation tool, we propose the microbial spatial heterogeneity and short-range interaction mechanism that the microbial assembly facilitates the gene expressions of the surface sensors including flagella and pili in Pseudomonas aeruginosa, leading to a more sensitive response to quorum sensing. The microbial interaction programming strategy proposed in this work is expected to provide a powerful and designable nanoplatform for better understanding of distance-dependent bacterial communication networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
索莱宝 Agar
索莱宝 Peptone
索莱宝 Yeast extract
阿拉丁 Chloroform
阿拉丁 Acetonitrile
阿拉丁 Sodium chloride (NaCl)
阿拉丁 Methanol
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Chiral flat-band optical cavity with atomically thin mirrors An agile multimodal microrobot with architected passively morphing wheels Terrestrial evidence for volcanogenic sulfate-driven cooling event ~30 kyr before the Cretaceous–Paleogene mass extinction Regional differences in three-dimensional fiber organization, smooth muscle cell phenotype, and contractility in the pregnant mouse cervix Solvent-responsive covalent organic framework membranes for precise and tunable molecular sieving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1