Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-03-01 Epub Date: 2024-12-04 DOI:10.1016/j.neunet.2024.106979
Jiaxun Guo, Wentao Fan, Manar Amayri, Nizar Bouguila
{"title":"Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings.","authors":"Jiaxun Guo, Wentao Fan, Manar Amayri, Nizar Bouguila","doi":"10.1016/j.neunet.2024.106979","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106979"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106979","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合隐嵌入的变分自编码器深度聚类分析。
本文提出了一种新的基于变分自编码器(VAE)的深度聚类模型GamMM-VAE,该模型能够以无监督的方式学习训练数据的潜在表示进行聚类。现有的基于vae的深度聚类方法大多使用高斯混合模型(GMM)作为潜在空间的先验。我们采用更灵活的非对称伽马混合模型来实现更高质量的数据潜在空间嵌入。其次,由于Gamma是为严格正变量定义的,为了利用VAE的重参数化技巧,我们提出了一种从高斯分布到Gamma分布的转换方法。这种方法也可以被认为是一种伽马分布再参数化技巧,允许梯度在VAE的采样过程中反向传播。最后,我们有效地推导了基于Gamma混合模型的随机梯度变分贝叶斯(SGVB)估计器的证据下界(ELBO),以优化所提出的模型。ELBO是一种变分推理目标,它保证了后验分布的近似最大化,而SGVB是一种用于在vae中进行有效推理和学习的方法。我们通过在六个基准数据集上与其他最先进的深度聚类模型进行定量比较,验证了我们模型的有效性。此外,由于VAEs的生成特性,所提出的模型可以在没有监督信息的情况下生成特定类别的高度真实的样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1