ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images.
Revathi Mohan, Rajesh Arunachalam, Neha Verma, Shital Mali
{"title":"ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images.","authors":"Revathi Mohan, Rajesh Arunachalam, Neha Verma, Shital Mali","doi":"10.1080/0954898X.2024.2435491","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most familiar types of disease is Alzheimer's disease (AD) and it mainly impacts people over the age limit of 60. AD causes irreversible brain damage in humans. It is difficult to recognize the various stages of AD, hence advanced deep learning methods are suggested for recognizing AD in its initial stages. In this experiment, an effective deep model-based AD detection approach is introduced to provide effective treatment to the patient. Initially, an essential MRI is collected from the benchmark resources. After that, the gathered MRIs are provided as input to the feature extraction phase. Also, the important features in the input image are extracted by Vision Transformer-based Residual DenseNet (ViT-ResDenseNet). Later, the retrieved features are applied to the Alzheimer's detection stage. In this phase, AD is detected using an Adaptive Deep Bayesian Network (Ada-DBN). Additionally, the attributes of Ada-DBN are optimized with the help of Enhanced Golf Optimization Algorithm (EGOA). So, the implemented Alzheimer's detection model accomplishes relatively higher reliability than existing techniques. The numerical results of the suggested framework obtained an accuracy value of 96.35 which is greater than the 91.08, 91.95, and 93.95 attained by the EfficientNet-B2, TF- CNN, and ViT-GRU, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-41"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2435491","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most familiar types of disease is Alzheimer's disease (AD) and it mainly impacts people over the age limit of 60. AD causes irreversible brain damage in humans. It is difficult to recognize the various stages of AD, hence advanced deep learning methods are suggested for recognizing AD in its initial stages. In this experiment, an effective deep model-based AD detection approach is introduced to provide effective treatment to the patient. Initially, an essential MRI is collected from the benchmark resources. After that, the gathered MRIs are provided as input to the feature extraction phase. Also, the important features in the input image are extracted by Vision Transformer-based Residual DenseNet (ViT-ResDenseNet). Later, the retrieved features are applied to the Alzheimer's detection stage. In this phase, AD is detected using an Adaptive Deep Bayesian Network (Ada-DBN). Additionally, the attributes of Ada-DBN are optimized with the help of Enhanced Golf Optimization Algorithm (EGOA). So, the implemented Alzheimer's detection model accomplishes relatively higher reliability than existing techniques. The numerical results of the suggested framework obtained an accuracy value of 96.35 which is greater than the 91.08, 91.95, and 93.95 attained by the EfficientNet-B2, TF- CNN, and ViT-GRU, respectively.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.