ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-12-11 DOI:10.1080/0954898X.2024.2435491
Revathi Mohan, Rajesh Arunachalam, Neha Verma, Shital Mali
{"title":"ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images.","authors":"Revathi Mohan, Rajesh Arunachalam, Neha Verma, Shital Mali","doi":"10.1080/0954898X.2024.2435491","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most familiar types of disease is Alzheimer's disease (AD) and it mainly impacts people over the age limit of 60. AD causes irreversible brain damage in humans. It is difficult to recognize the various stages of AD, hence advanced deep learning methods are suggested for recognizing AD in its initial stages. In this experiment, an effective deep model-based AD detection approach is introduced to provide effective treatment to the patient. Initially, an essential MRI is collected from the benchmark resources. After that, the gathered MRIs are provided as input to the feature extraction phase. Also, the important features in the input image are extracted by Vision Transformer-based Residual DenseNet (ViT-ResDenseNet). Later, the retrieved features are applied to the Alzheimer's detection stage. In this phase, AD is detected using an Adaptive Deep Bayesian Network (Ada-DBN). Additionally, the attributes of Ada-DBN are optimized with the help of Enhanced Golf Optimization Algorithm (EGOA). So, the implemented Alzheimer's detection model accomplishes relatively higher reliability than existing techniques. The numerical results of the suggested framework obtained an accuracy value of 96.35 which is greater than the 91.08, 91.95, and 93.95 attained by the EfficientNet-B2, TF- CNN, and ViT-GRU, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-41"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2435491","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most familiar types of disease is Alzheimer's disease (AD) and it mainly impacts people over the age limit of 60. AD causes irreversible brain damage in humans. It is difficult to recognize the various stages of AD, hence advanced deep learning methods are suggested for recognizing AD in its initial stages. In this experiment, an effective deep model-based AD detection approach is introduced to provide effective treatment to the patient. Initially, an essential MRI is collected from the benchmark resources. After that, the gathered MRIs are provided as input to the feature extraction phase. Also, the important features in the input image are extracted by Vision Transformer-based Residual DenseNet (ViT-ResDenseNet). Later, the retrieved features are applied to the Alzheimer's detection stage. In this phase, AD is detected using an Adaptive Deep Bayesian Network (Ada-DBN). Additionally, the attributes of Ada-DBN are optimized with the help of Enhanced Golf Optimization Algorithm (EGOA). So, the implemented Alzheimer's detection model accomplishes relatively higher reliability than existing techniques. The numerical results of the suggested framework obtained an accuracy value of 96.35 which is greater than the 91.08, 91.95, and 93.95 attained by the EfficientNet-B2, TF- CNN, and ViT-GRU, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Human activity recognition utilizing optimized attention induced Multihead Convolutional Neural Network with Mobile Net V1 from Mobile health data. Multiagent DDOS attack detection model: Optimal trained hybrid classifier and entropy-based mitigation process. Design of a neural transformer for Spanish to Mexican Sign Language automatic translation/interpretation. ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images. Modified ensemble machine learning-based plant leaf disease detection model with optimized K-Means clustering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1