Genome-wide screen and multi-omics analysis reveal OGT1 participate in the biosynthesis of safflower flavonoid glycosides.

IF 7.6 Q1 GENETICS & HEREDITY 园艺研究(英文) Pub Date : 2024-09-16 eCollection Date: 2024-12-01 DOI:10.1093/hr/uhae261
Bin Xian, Yanxun Zhou, Yueying Hu, Yanni Peng, Xiaominting Song, Ziqing Xi, Yuhang Li, Jie Yan, Chaoxiang Ren, Jin Pei, Jiang Chen
{"title":"Genome-wide screen and multi-omics analysis reveal <i>OGT1</i> participate in the biosynthesis of safflower flavonoid glycosides.","authors":"Bin Xian, Yanxun Zhou, Yueying Hu, Yanni Peng, Xiaominting Song, Ziqing Xi, Yuhang Li, Jie Yan, Chaoxiang Ren, Jin Pei, Jiang Chen","doi":"10.1093/hr/uhae261","DOIUrl":null,"url":null,"abstract":"<p><p>Safflower, an economic crop, is renowned for its flowers, which are widely used in medicines for treating cardiovascular and cerebrovascular diseases and in dyes for food and industry. The utility of safflower depends on its flavonoid glycosides. Therefore, the biosynthesis of safflower flavonoid glycosides has been a focus of attention, but the present mechanisms remain poorly understood. This study aims to identify functional genes associated with flavonoid glycoside biosynthesis in safflower through a comprehensive approach that integrates whole-genome screen and multi-omics correlation studies. CYP and UGT are two crucial genes families involved in flavonoid glycoside biosynthesis. We have screened 264 CYP genes and 140 UGT genes in the genome of safflower and conducted analyzes including phylogenetic relationships, conserved motifs, gene structures, <i>cis</i>-acting elements, and chromosome mapping, which provided extensive and comprehensive data on the CYP and UGT gene families. Integration of phenotype and metabolic data from safflower different tissues helped narrow down the screening by confirming that HSYA is synthesized only in flowers. Based on the gene expression patterns and phylogenetic analysis, <i>CtOGT1</i> was ultimately identified, which could catalyze the generation of glycosides using various flavonoid substrates and exhibited strong substrate affinity. Moreover, molecular docking studies elucidated CtOGT1's highly active intrinsic mechanism. In conclusion, this study effectively identified genes responsible for flavonoid glycoside biosynthesis in safflower through the integration of whole-genome screen and multi-omics analysis, established a comprehensive foundation of data, methodology, and experimental evidence for further elucidating the pathways of safflower flavonoid glycoside biosynthesis.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 12","pages":"uhae261"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhae261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Safflower, an economic crop, is renowned for its flowers, which are widely used in medicines for treating cardiovascular and cerebrovascular diseases and in dyes for food and industry. The utility of safflower depends on its flavonoid glycosides. Therefore, the biosynthesis of safflower flavonoid glycosides has been a focus of attention, but the present mechanisms remain poorly understood. This study aims to identify functional genes associated with flavonoid glycoside biosynthesis in safflower through a comprehensive approach that integrates whole-genome screen and multi-omics correlation studies. CYP and UGT are two crucial genes families involved in flavonoid glycoside biosynthesis. We have screened 264 CYP genes and 140 UGT genes in the genome of safflower and conducted analyzes including phylogenetic relationships, conserved motifs, gene structures, cis-acting elements, and chromosome mapping, which provided extensive and comprehensive data on the CYP and UGT gene families. Integration of phenotype and metabolic data from safflower different tissues helped narrow down the screening by confirming that HSYA is synthesized only in flowers. Based on the gene expression patterns and phylogenetic analysis, CtOGT1 was ultimately identified, which could catalyze the generation of glycosides using various flavonoid substrates and exhibited strong substrate affinity. Moreover, molecular docking studies elucidated CtOGT1's highly active intrinsic mechanism. In conclusion, this study effectively identified genes responsible for flavonoid glycoside biosynthesis in safflower through the integration of whole-genome screen and multi-omics analysis, established a comprehensive foundation of data, methodology, and experimental evidence for further elucidating the pathways of safflower flavonoid glycoside biosynthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.90
自引率
0.00%
发文量
0
期刊最新文献
plantGIR: a genomic database of plants. Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea (Pisum sativum L). Genome-wide screen and multi-omics analysis reveal OGT1 participate in the biosynthesis of safflower flavonoid glycosides. Integrated genome-wide association and transcriptomic studies reveal genetic architecture of bulb storability of plentiful garlic germplasm resources. A glimpse of light on the mystery of regulating temperate fruit tree blooming time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1