Lena E. Høyland, Magali R. VanLinden, Marc Niere, Øyvind Strømland, Suraj Sharma, Jörn Dietze, Ingvill Tolås, Eva Lucena, Ersilia Bifulco, Lars J. Sverkeli, Camila Cimadamore-Werthein, Hanan Ashrafi, Kjellfrid F. Haukanes, Barbara van der Hoeven, Christian Dölle, Cédric Davidsen, Ina K. N. Pettersen, Karl J. Tronstad, Svein A. Mjøs, Faisal Hayat, Mikhail V. Makarov, Marie E. Migaud, Ines Heiland, Mathias Ziegler
{"title":"Subcellular NAD+ pools are interconnected and buffered by mitochondrial NAD+","authors":"Lena E. Høyland, Magali R. VanLinden, Marc Niere, Øyvind Strømland, Suraj Sharma, Jörn Dietze, Ingvill Tolås, Eva Lucena, Ersilia Bifulco, Lars J. Sverkeli, Camila Cimadamore-Werthein, Hanan Ashrafi, Kjellfrid F. Haukanes, Barbara van der Hoeven, Christian Dölle, Cédric Davidsen, Ina K. N. Pettersen, Karl J. Tronstad, Svein A. Mjøs, Faisal Hayat, Mikhail V. Makarov, Marie E. Migaud, Ines Heiland, Mathias Ziegler","doi":"10.1038/s42255-024-01174-w","DOIUrl":null,"url":null,"abstract":"<p>The coenzyme NAD<sup>+</sup> is consumed by signalling enzymes, including poly-ADP-ribosyltransferases (PARPs) and sirtuins. Ageing is associated with a decrease in cellular NAD<sup>+</sup> levels, but how cells cope with persistently decreased NAD<sup>+</sup> concentrations is unclear. Here, we show that subcellular NAD<sup>+</sup> pools are interconnected, with mitochondria acting as a rheostat to maintain NAD<sup>+</sup> levels upon excessive consumption. To evoke chronic, compartment-specific overconsumption of NAD<sup>+</sup>, we engineered cell lines stably expressing PARP activity in mitochondria, the cytosol, endoplasmic reticulum or peroxisomes, resulting in a decline of cellular NAD<sup>+</sup> concentrations by up to 50%. Isotope-tracer flux measurements and mathematical modelling show that the lowered NAD<sup>+</sup> concentration kinetically restricts NAD<sup>+</sup> consumption to maintain a balance with the NAD<sup>+</sup> biosynthesis rate, which remains unchanged. Chronic NAD<sup>+</sup> deficiency is well tolerated unless mitochondria are directly targeted. Mitochondria maintain NAD<sup>+</sup> by import through SLC25A51 and reversibly cleave NAD<sup>+</sup> to nicotinamide mononucleotide and ATP when NMNAT3 is present. Thus, these organelles can maintain an additional, virtual NAD<sup>+</sup> pool. Our results are consistent with a well-tolerated ageing-related NAD<sup>+</sup> decline as long as the vulnerable mitochondrial pool is not directly affected.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"29 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-024-01174-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The coenzyme NAD+ is consumed by signalling enzymes, including poly-ADP-ribosyltransferases (PARPs) and sirtuins. Ageing is associated with a decrease in cellular NAD+ levels, but how cells cope with persistently decreased NAD+ concentrations is unclear. Here, we show that subcellular NAD+ pools are interconnected, with mitochondria acting as a rheostat to maintain NAD+ levels upon excessive consumption. To evoke chronic, compartment-specific overconsumption of NAD+, we engineered cell lines stably expressing PARP activity in mitochondria, the cytosol, endoplasmic reticulum or peroxisomes, resulting in a decline of cellular NAD+ concentrations by up to 50%. Isotope-tracer flux measurements and mathematical modelling show that the lowered NAD+ concentration kinetically restricts NAD+ consumption to maintain a balance with the NAD+ biosynthesis rate, which remains unchanged. Chronic NAD+ deficiency is well tolerated unless mitochondria are directly targeted. Mitochondria maintain NAD+ by import through SLC25A51 and reversibly cleave NAD+ to nicotinamide mononucleotide and ATP when NMNAT3 is present. Thus, these organelles can maintain an additional, virtual NAD+ pool. Our results are consistent with a well-tolerated ageing-related NAD+ decline as long as the vulnerable mitochondrial pool is not directly affected.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.