Design and dynamic analysis of a class of new 3-D discrete memristive hyperchaotic maps with multi-type hidden attractors

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-12-12 DOI:10.1016/j.chaos.2024.115905
Chunlei Fan, Qun Ding
{"title":"Design and dynamic analysis of a class of new 3-D discrete memristive hyperchaotic maps with multi-type hidden attractors","authors":"Chunlei Fan, Qun Ding","doi":"10.1016/j.chaos.2024.115905","DOIUrl":null,"url":null,"abstract":"As a basic component with special nonlinearity, memristor is widely used in chaotic circuits. In this paper, based on the mathematical model of a discrete cosine memristor, we constructed a class of new 3-D discrete memristive chaotic maps (3DDMCM) with infinite equilibrium points or no equilibrium points. Theoretical analysis and numerical simulations demonstrate that the 3DDMCM can generate an arbitrary number of multi-type hidden attractors, including multi-wave, multi-cavity, multi-firework, and multi-diamond hidden attractors. The discovery of the novel dynamic property enriches the diversity of memristive chaotic maps. The control parameter <ce:italic>μ</ce:italic> can adjust the number of basic forms of various chaotic attractors, thereby producing phenomena similar to multi-scroll patterns. Specifically, when the number of basic forms is determined, the chaotic attractor undergoes further mutations by changing the control parameter <ce:italic>b</ce:italic>. The corresponding dynamic analysis indicates that the system possesses two positive Lyapunov exponents, high complexity, offset boosting, and various geometric control behaviors. Finally, a pseudo-random number generator (PRNG) with desirable statistical properties is constructed to lay the foundation for engineering applications in the field of chaotic secure communication. Additionally, we utilized a DSP development board to implement the 3DDMCM, thereby confirming the feasibility of this system.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"41 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115905","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

As a basic component with special nonlinearity, memristor is widely used in chaotic circuits. In this paper, based on the mathematical model of a discrete cosine memristor, we constructed a class of new 3-D discrete memristive chaotic maps (3DDMCM) with infinite equilibrium points or no equilibrium points. Theoretical analysis and numerical simulations demonstrate that the 3DDMCM can generate an arbitrary number of multi-type hidden attractors, including multi-wave, multi-cavity, multi-firework, and multi-diamond hidden attractors. The discovery of the novel dynamic property enriches the diversity of memristive chaotic maps. The control parameter μ can adjust the number of basic forms of various chaotic attractors, thereby producing phenomena similar to multi-scroll patterns. Specifically, when the number of basic forms is determined, the chaotic attractor undergoes further mutations by changing the control parameter b. The corresponding dynamic analysis indicates that the system possesses two positive Lyapunov exponents, high complexity, offset boosting, and various geometric control behaviors. Finally, a pseudo-random number generator (PRNG) with desirable statistical properties is constructed to lay the foundation for engineering applications in the field of chaotic secure communication. Additionally, we utilized a DSP development board to implement the 3DDMCM, thereby confirming the feasibility of this system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类具有多类型隐藏吸引子的新型三维离散记忆超混沌图的设计与动态分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Numerical approximation and convergence to steady state solutions of a model for the dynamics of the sexual phase of Monogonont rotifera Design and dynamic analysis of a class of new 3-D discrete memristive hyperchaotic maps with multi-type hidden attractors System of telegraph particles with finite moments of the first collision instant of particles Reflection and transmission solitons via high magneto optical medium On the Lie symmetry analysis of three-dimensional perturbed shear flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1