Turbulence and Bedload Transport in Submerged Vegetation Canopies

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2024-12-13 DOI:10.1029/2024wr037694
Tian Zhao, Heidi Nepf
{"title":"Turbulence and Bedload Transport in Submerged Vegetation Canopies","authors":"Tian Zhao, Heidi Nepf","doi":"10.1029/2024wr037694","DOIUrl":null,"url":null,"abstract":"Using a constant channel velocity, <span data-altimg=\"/cms/asset/70a4c7db-bd6a-48ef-a7e9-acfa323f7367/wrcr27612-math-0001.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0001\" display=\"inline\" location=\"graphic/wrcr27612-math-0001.png\">\n<semantics>\n<mrow>\n<mi>U</mi>\n</mrow>\n$U$</annotation>\n</semantics></math>, flume experiments investigated how canopy density (<span data-altimg=\"/cms/asset/f3ebe3ea-8869-45b7-9efd-f8a159023edf/wrcr27612-math-0002.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0002\" display=\"inline\" location=\"graphic/wrcr27612-math-0002.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math>, with canopy frontal area per unit volume <span data-altimg=\"/cms/asset/669ce969-2e78-4ff1-b9be-868a9bbad7d5/wrcr27612-math-0003.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0003\" display=\"inline\" location=\"graphic/wrcr27612-math-0003.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n</mrow>\n$a$</annotation>\n</semantics></math>, and canopy height <span data-altimg=\"/cms/asset/f6b29139-6691-42eb-9207-55147e0e82f8/wrcr27612-math-0004.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0004\" display=\"inline\" location=\"graphic/wrcr27612-math-0004.png\">\n<semantics>\n<mrow>\n<mi>h</mi>\n</mrow>\n$h$</annotation>\n</semantics></math>) and submergence ratio (<span data-altimg=\"/cms/asset/546d9e68-c1c3-4878-b498-253ec4794c8a/wrcr27612-math-0005.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0005\" display=\"inline\" location=\"graphic/wrcr27612-math-0005.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math>, with <span data-altimg=\"/cms/asset/7ea0294b-799d-4e6d-82dc-bc8ff2b29a1b/wrcr27612-math-0006.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0006\" display=\"inline\" location=\"graphic/wrcr27612-math-0006.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n</mrow>\n$H$</annotation>\n</semantics></math> the flow depth) impacted near-bed velocity, turbulence, and bedload transport within a submerged canopy of rigid model vegetation. For <span data-altimg=\"/cms/asset/86607138-c301-4010-8ee7-235843782c82/wrcr27612-math-0007.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0007\" display=\"inline\" location=\"graphic/wrcr27612-math-0007.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> &lt; 2, the near-bed turbulent kinetic energy (TKE) was predominantly stem-generated. As <span data-altimg=\"/cms/asset/629b357b-de3e-4942-a3a4-66ffc8f08c5d/wrcr27612-math-0008.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0008\" display=\"inline\" location=\"graphic/wrcr27612-math-0008.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> increased, both the near-bed TKE and bedload transport rate (<span data-altimg=\"/cms/asset/4992e2cb-1917-4508-b524-aa7b58265106/wrcr27612-math-0009.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0009\" display=\"inline\" location=\"graphic/wrcr27612-math-0009.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>q</mi>\n<mi mathvariant=\"normal\">s</mi>\n</msub>\n</mrow>\n${q}_{\\mathrm{s}}$</annotation>\n</semantics></math>) increased. For <span data-altimg=\"/cms/asset/fafb9c2a-fbfb-4165-970a-e0baaab33065/wrcr27612-math-0010.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0010\" display=\"inline\" location=\"graphic/wrcr27612-math-0010.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> &gt; 2, the near-bed TKE was insensitive to <span data-altimg=\"/cms/asset/c353fa1b-f61d-4484-bc85-555884847b68/wrcr27612-math-0011.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0011\" display=\"inline\" location=\"graphic/wrcr27612-math-0011.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> and <span data-altimg=\"/cms/asset/e14a0a83-e26b-46d2-8e7d-fbae5daeb7fb/wrcr27612-math-0012.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0012\" display=\"inline\" location=\"graphic/wrcr27612-math-0012.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math>, because of a trade-off between decreasing stem-generated turbulence and increasing canopy-shear-generated turbulence, as <span data-altimg=\"/cms/asset/b42ab687-ed16-4d33-85da-0f26bc1894f2/wrcr27612-math-0013.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0013\" display=\"inline\" location=\"graphic/wrcr27612-math-0013.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> and <span data-altimg=\"/cms/asset/88da6652-08a9-451b-b6e0-8c231c936a4a/wrcr27612-math-0014.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0014\" display=\"inline\" location=\"graphic/wrcr27612-math-0014.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> increased. However, the near-bed velocity declined with increasing <span data-altimg=\"/cms/asset/df68d005-699a-4318-85a3-50adeb9ccd58/wrcr27612-math-0015.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0015\" display=\"inline\" location=\"graphic/wrcr27612-math-0015.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> and <span data-altimg=\"/cms/asset/5866bfb5-e105-465e-9eb9-22117e09c971/wrcr27612-math-0016.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0016\" display=\"inline\" location=\"graphic/wrcr27612-math-0016.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math>, such that, even with a constant TKE, <span data-altimg=\"/cms/asset/5324c149-b58f-4c1b-8a71-2be7db410e1a/wrcr27612-math-0017.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0017\" display=\"inline\" location=\"graphic/wrcr27612-math-0017.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>q</mi>\n<mi mathvariant=\"normal\">s</mi>\n</msub>\n</mrow>\n${q}_{\\mathrm{s}}$</annotation>\n</semantics></math> also declined. These trends highlight that both TKE and velocity were important in controlling bedload transport. Models to predict velocity, TKE, and bedload transport were developed and validated with measurements. The models were then used to explore conditions more relevant to the field, specifically with constant energy slope (<span data-altimg=\"/cms/asset/fac0a007-921c-4cf9-a5be-d73ee1faa5ac/wrcr27612-math-0018.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0018\" display=\"inline\" location=\"graphic/wrcr27612-math-0018.png\">\n<semantics>\n<mrow>\n<mi>S</mi>\n</mrow>\n$S$</annotation>\n</semantics></math>) and flexible vegetation. For a constant energy slope, <span data-altimg=\"/cms/asset/48836d82-9985-4eef-b5de-79f55e984de7/wrcr27612-math-0019.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0019\" display=\"inline\" location=\"graphic/wrcr27612-math-0019.png\">\n<semantics>\n<mrow>\n<mi>U</mi>\n</mrow>\n$U$</annotation>\n</semantics></math> increased as <span data-altimg=\"/cms/asset/56784217-9b6e-46db-b81b-37f71c8d2d17/wrcr27612-math-0020.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0020\" display=\"inline\" location=\"graphic/wrcr27612-math-0020.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math> decreased and as <span data-altimg=\"/cms/asset/84648712-ec4d-4bff-85d1-eeb978b6f41c/wrcr27612-math-0021.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0021\" display=\"inline\" location=\"graphic/wrcr27612-math-0021.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> increased, which in turn influenced the in-canopy velocity and TKE. The highest <span data-altimg=\"/cms/asset/f23c96d9-6145-412a-ac47-73056d3e2c03/wrcr27612-math-0022.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0022\" display=\"inline\" location=\"graphic/wrcr27612-math-0022.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>q</mi>\n<mi mathvariant=\"normal\">s</mi>\n</msub>\n</mrow>\n${q}_{\\mathrm{s}}$</annotation>\n</semantics></math> occurred with the greatest <span data-altimg=\"/cms/asset/736801f5-8f7c-4f55-8113-841a5fa3b483/wrcr27612-math-0023.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0023\" display=\"inline\" location=\"graphic/wrcr27612-math-0023.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> and smallest <span data-altimg=\"/cms/asset/bfc2309e-5666-47af-b291-7dd90e98d7b0/wrcr27612-math-0024.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0024\" display=\"inline\" location=\"graphic/wrcr27612-math-0024.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math>, corresponding to the highest <span data-altimg=\"/cms/asset/1f848b97-356d-4384-ba88-d8e7b2e64424/wrcr27612-math-0025.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0025\" display=\"inline\" location=\"graphic/wrcr27612-math-0025.png\">\n<semantics>\n<mrow>\n<mi>U</mi>\n</mrow>\n$U$</annotation>\n</semantics></math> and greatest contribution of canopy-shear-generated turbulence, reflecting the importance of canopy-shear-generated turbulence in submerged canopies. The lowest <span data-altimg=\"/cms/asset/36d3b875-f4a2-430b-b589-f13bcf134ccf/wrcr27612-math-0026.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0026\" display=\"inline\" location=\"graphic/wrcr27612-math-0026.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>q</mi>\n<mi mathvariant=\"normal\">s</mi>\n</msub>\n</mrow>\n${q}_{\\mathrm{s}}$</annotation>\n</semantics></math> occurred with smallest <span data-altimg=\"/cms/asset/3d78ef91-586d-463a-8621-e8b29e1adeca/wrcr27612-math-0027.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0027\" display=\"inline\" location=\"graphic/wrcr27612-math-0027.png\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>/</mo>\n<mi>h</mi>\n</mrow>\n$H/h$</annotation>\n</semantics></math> and highest <span data-altimg=\"/cms/asset/27df9988-78db-43a3-9368-ac98ee270649/wrcr27612-math-0028.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0028\" display=\"inline\" location=\"graphic/wrcr27612-math-0028.png\">\n<semantics>\n<mrow>\n<mi>a</mi>\n<mi>h</mi>\n</mrow>\n$ah$</annotation>\n</semantics></math>, corresponding to the smallest <span data-altimg=\"/cms/asset/b7afcb4b-0df2-460f-bc47-b8082f31e4f2/wrcr27612-math-0029.png\"></span><math altimg=\"urn:x-wiley:00431397:media:wrcr27612:wrcr27612-math-0029\" display=\"inline\" location=\"graphic/wrcr27612-math-0029.png\">\n<semantics>\n<mrow>\n<mi>U</mi>\n</mrow>\n$U$</annotation>\n</semantics></math> and least contribution of canopy-shear-generated turbulence.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"22 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037694","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Using a constant channel velocity, U $U$ , flume experiments investigated how canopy density ( a h $ah$ , with canopy frontal area per unit volume a $a$ , and canopy height h $h$ ) and submergence ratio ( H / h $H/h$ , with H $H$ the flow depth) impacted near-bed velocity, turbulence, and bedload transport within a submerged canopy of rigid model vegetation. For H / h $H/h$  < 2, the near-bed turbulent kinetic energy (TKE) was predominantly stem-generated. As a h $ah$ increased, both the near-bed TKE and bedload transport rate ( q s ${q}_{\mathrm{s}}$ ) increased. For H / h $H/h$  > 2, the near-bed TKE was insensitive to a h $ah$ and H / h $H/h$ , because of a trade-off between decreasing stem-generated turbulence and increasing canopy-shear-generated turbulence, as a h $ah$ and H / h $H/h$ increased. However, the near-bed velocity declined with increasing a h $ah$ and H / h $H/h$ , such that, even with a constant TKE, q s ${q}_{\mathrm{s}}$ also declined. These trends highlight that both TKE and velocity were important in controlling bedload transport. Models to predict velocity, TKE, and bedload transport were developed and validated with measurements. The models were then used to explore conditions more relevant to the field, specifically with constant energy slope ( S $S$ ) and flexible vegetation. For a constant energy slope, U $U$ increased as a h $ah$ decreased and as H / h $H/h$ increased, which in turn influenced the in-canopy velocity and TKE. The highest q s ${q}_{\mathrm{s}}$ occurred with the greatest H / h $H/h$ and smallest a h $ah$ , corresponding to the highest U $U$ and greatest contribution of canopy-shear-generated turbulence, reflecting the importance of canopy-shear-generated turbulence in submerged canopies. The lowest q s ${q}_{\mathrm{s}}$ occurred with smallest H / h $H/h$ and highest a h $ah$ , corresponding to the smallest U $U$ and least contribution of canopy-shear-generated turbulence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水槽实验采用恒定的河道流速 U$U$,研究了冠层密度(ah$ah$,单位体积冠层正面面积 a$a$,冠层高度 h$h$)和浸没率(H/h$H/h$,H$H$为水流深度)如何影响刚性模型植被浸没冠层内的近床流速、湍流和床面负荷迁移。当 H/h$H/h$ < 2 时,近床湍流动能 (TKE) 主要由茎杆产生。随着 ah$ah$ 的增加,近床 TKE 和床面负荷迁移率(qs${q}_{mathrm{s}}$)都增加了。对于 H/h$H/h$ >2,近床 TKE 对 ah$ah$ 和 H/h$H/h$ 不敏感,这是因为随着 ah$ah$ 和 H/h$H/h$ 的增加,茎干产生的湍流减小,而冠层剪切产生的湍流增大。然而,近床速度随着 ah$ah$ 和 H/h$H/h$ 的增加而下降,这样,即使 TKE 保持不变,qs${q}_{mathrm{s}}$ 也会下降。这些趋势突出表明,TKE 和流速在控制床面负荷迁移方面都很重要。建立了预测速度、TKE 和床面负荷迁移的模型,并通过测量进行了验证。然后,利用这些模型探讨了与实地更相关的条件,特别是恒定能量坡(S$S$)和柔性植被。在能量坡度不变的情况下,U$U$随着 ah$ah$ 的减小和 H/h$H/h$ 的增大而增大,这反过来又影响了冠层内速度和 TKE。最高的 qs${q}_{mathrm{s}}$ 出现在最大的 H/h$H/h$ 和最小的 ah$ah$ 时,与最高的 U$U$ 和冠层剪切产生的湍流最大的贡献相对应,反映了冠层剪切产生的湍流在淹没冠层中的重要性。最低的 qs${q}_{mathrm{s}}$ 出现在最小的 H/h$H/h$ 和最高的 ah$ah$ 中,对应最小的 U$U$ 和由冠层剪切产生的湍流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
Groundwater Responses to Deluge and Drought in the Fraser Valley, Pacific Northwest Synergizing Intuitive Physics and Big Data in Deep Learning: Can We Obtain Process Insights While Maintaining State-Of-The-Art Hydrological Prediction Capability? Turbulence and Bedload Transport in Submerged Vegetation Canopies Hydrodynamics of In-Stream Leaky Barriers for Natural Flood Management Comparing Global Violations of Environmentally Critical Groundwater Discharge Thresholds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1