Machine Learning Prediction of Tritium-Helium Groundwater Ages in the Central Valley, California, USA

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2025-01-25 DOI:10.1029/2024wr038031
Abdullah Azhar, Indrasis Chakraborty, Ate Visser, Yang Liu, Jory Chapin Lerback, Erik Oerter
{"title":"Machine Learning Prediction of Tritium-Helium Groundwater Ages in the Central Valley, California, USA","authors":"Abdullah Azhar, Indrasis Chakraborty, Ate Visser, Yang Liu, Jory Chapin Lerback, Erik Oerter","doi":"10.1029/2024wr038031","DOIUrl":null,"url":null,"abstract":"Groundwater ages provides insight into recharge rates, flow velocities, and vulnerability to contaminants. The ability to predict groundwater ages based on more accessible parameters via Machine Learning (ML) would advance our ability to guide sustainable management of groundwater resources. In this study, ML models were trained and tested on a large data set of tritium concentrations <span data-altimg=\"/cms/asset/2c84bf4c-65ef-408f-b284-a7eb7282f213/wrcr27674-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"50\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 2410 right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0001\" display=\"inline\" location=\"graphic/wrcr27674-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 2410 right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2410</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$(n=2410)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and tritium-helium groundwater ages <span data-altimg=\"/cms/asset/51ee1a1c-1ccf-49b5-a5ef-8e855095a500/wrcr27674-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"51\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 1157 right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0002\" display=\"inline\" location=\"graphic/wrcr27674-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 1157 right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1157</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$(n=1157)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> from the California Central Valley, a large groundwater basin with complex land use, irrigation, and water management practices. The ML models were trained on 63 features, including location, well construction information, landscape characteristics, and climate variables, water chemistry, and stable isotopes. The Bagging regressor method can accurately classify (F1-score = 0.91) groundwater samples as either modern or pre-modern whereas the accuracy of the ML prediction of continuous tritium-helium groundwater ages is limited and explains only <span data-altimg=\"/cms/asset/4adb4963-cf4e-4466-893e-6e60d61f6eb7/wrcr27674-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"52\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4,2\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"endpunct\" data-semantic-speech=\"tilde 30 percent sign\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-children=\"3,1\" data-semantic-content=\"0\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mi data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0003\" display=\"inline\" location=\"graphic/wrcr27674-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4,2\" data-semantic-content=\"2\" data-semantic-role=\"endpunct\" data-semantic-speech=\"tilde 30 percent sign\" data-semantic-type=\"punctuated\"><mrow data-semantic-=\"\" data-semantic-children=\"3,1\" data-semantic-content=\"0\" data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mrow data-semantic-=\"\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mrow><mo data-semantic-=\"\" data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">∼</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">30</mn></mrow><mi data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\">%</mi></mrow>${\\sim} 30\\%$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of the variability in this data set. In general, ML groundwater age prediction relies mostly on features related to (a) the source of groundwater recharge, (b) contaminant history, (c) aquifer materials, (d) well construction, and (e) geochemical reactions along flow paths.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"8 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038031","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater ages provides insight into recharge rates, flow velocities, and vulnerability to contaminants. The ability to predict groundwater ages based on more accessible parameters via Machine Learning (ML) would advance our ability to guide sustainable management of groundwater resources. In this study, ML models were trained and tested on a large data set of tritium concentrations (n=2410)$(n=2410)$ and tritium-helium groundwater ages (n=1157)$(n=1157)$ from the California Central Valley, a large groundwater basin with complex land use, irrigation, and water management practices. The ML models were trained on 63 features, including location, well construction information, landscape characteristics, and climate variables, water chemistry, and stable isotopes. The Bagging regressor method can accurately classify (F1-score = 0.91) groundwater samples as either modern or pre-modern whereas the accuracy of the ML prediction of continuous tritium-helium groundwater ages is limited and explains only 30%${\sim} 30\%$ of the variability in this data set. In general, ML groundwater age prediction relies mostly on features related to (a) the source of groundwater recharge, (b) contaminant history, (c) aquifer materials, (d) well construction, and (e) geochemical reactions along flow paths.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
Unraveling the Distinct Roles of Snowmelt and Glacier-Melt on Agricultural Water Availability: A Novel Indicator and Its Application in a Glacierized Basin of China’s Arid Region Machine Learning Prediction of Tritium-Helium Groundwater Ages in the Central Valley, California, USA Control of Groundwater-Lake Interaction Zone Structure on Spatial Variability of Lacustrine Groundwater Discharge in Oxbow Lake A Cluster-Based Data Assimilation Approach to Generate New Daily Gridded Time Series Precipitation Data in the Himalayan River Basins Physics-Guided Deep Learning Model for Daily Groundwater Table Maps Estimation Using Passive Surface-Wave Dispersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1