Abdullah Azhar, Indrasis Chakraborty, Ate Visser, Yang Liu, Jory Chapin Lerback, Erik Oerter
{"title":"Machine Learning Prediction of Tritium-Helium Groundwater Ages in the Central Valley, California, USA","authors":"Abdullah Azhar, Indrasis Chakraborty, Ate Visser, Yang Liu, Jory Chapin Lerback, Erik Oerter","doi":"10.1029/2024wr038031","DOIUrl":null,"url":null,"abstract":"Groundwater ages provides insight into recharge rates, flow velocities, and vulnerability to contaminants. The ability to predict groundwater ages based on more accessible parameters via Machine Learning (ML) would advance our ability to guide sustainable management of groundwater resources. In this study, ML models were trained and tested on a large data set of tritium concentrations <span data-altimg=\"/cms/asset/2c84bf4c-65ef-408f-b284-a7eb7282f213/wrcr27674-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"50\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 2410 right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0001\" display=\"inline\" location=\"graphic/wrcr27674-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 2410 right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2410</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$(n=2410)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and tritium-helium groundwater ages <span data-altimg=\"/cms/asset/51ee1a1c-1ccf-49b5-a5ef-8e855095a500/wrcr27674-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"51\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 1157 right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0002\" display=\"inline\" location=\"graphic/wrcr27674-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 1157 right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1157</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$(n=1157)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> from the California Central Valley, a large groundwater basin with complex land use, irrigation, and water management practices. The ML models were trained on 63 features, including location, well construction information, landscape characteristics, and climate variables, water chemistry, and stable isotopes. The Bagging regressor method can accurately classify (F1-score = 0.91) groundwater samples as either modern or pre-modern whereas the accuracy of the ML prediction of continuous tritium-helium groundwater ages is limited and explains only <span data-altimg=\"/cms/asset/4adb4963-cf4e-4466-893e-6e60d61f6eb7/wrcr27674-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"52\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4,2\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"endpunct\" data-semantic-speech=\"tilde 30 percent sign\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-children=\"3,1\" data-semantic-content=\"0\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mi data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0003\" display=\"inline\" location=\"graphic/wrcr27674-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4,2\" data-semantic-content=\"2\" data-semantic-role=\"endpunct\" data-semantic-speech=\"tilde 30 percent sign\" data-semantic-type=\"punctuated\"><mrow data-semantic-=\"\" data-semantic-children=\"3,1\" data-semantic-content=\"0\" data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mrow data-semantic-=\"\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mrow><mo data-semantic-=\"\" data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">∼</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">30</mn></mrow><mi data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\">%</mi></mrow>${\\sim} 30\\%$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of the variability in this data set. In general, ML groundwater age prediction relies mostly on features related to (a) the source of groundwater recharge, (b) contaminant history, (c) aquifer materials, (d) well construction, and (e) geochemical reactions along flow paths.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"8 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038031","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater ages provides insight into recharge rates, flow velocities, and vulnerability to contaminants. The ability to predict groundwater ages based on more accessible parameters via Machine Learning (ML) would advance our ability to guide sustainable management of groundwater resources. In this study, ML models were trained and tested on a large data set of tritium concentrations and tritium-helium groundwater ages from the California Central Valley, a large groundwater basin with complex land use, irrigation, and water management practices. The ML models were trained on 63 features, including location, well construction information, landscape characteristics, and climate variables, water chemistry, and stable isotopes. The Bagging regressor method can accurately classify (F1-score = 0.91) groundwater samples as either modern or pre-modern whereas the accuracy of the ML prediction of continuous tritium-helium groundwater ages is limited and explains only of the variability in this data set. In general, ML groundwater age prediction relies mostly on features related to (a) the source of groundwater recharge, (b) contaminant history, (c) aquifer materials, (d) well construction, and (e) geochemical reactions along flow paths.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.