An electrically activable nanochip to intensify gas-ionic-immunotherapy.

IF 18.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Bulletin Pub Date : 2024-11-26 DOI:10.1016/j.scib.2024.11.035
Gang Wang, Jingrui Li, Shumin Sun, Yuqi Yang, Zhihui Han, Zifan Pei, Liang Cheng
{"title":"An electrically activable nanochip to intensify gas-ionic-immunotherapy.","authors":"Gang Wang, Jingrui Li, Shumin Sun, Yuqi Yang, Zhihui Han, Zifan Pei, Liang Cheng","doi":"10.1016/j.scib.2024.11.035","DOIUrl":null,"url":null,"abstract":"<p><p>Excess intracellular H<sub>2</sub>S induces destructive mitochondrial toxicity, while overload of Zn<sup>2+</sup> results in cell pyroptosis and potentiates the tumor immunogenicity for immunotherapy. However, the precise delivery of both therapeutics remains a great challenge. Herein, an electrically activable ZnS nanochip for the controlled release of H<sub>2</sub>S and Zn<sup>2+</sup> was developed for enhanced gas-ionic-immunotherapy (GIIT). Under an electric field, a locality with particularly high concentrations of H<sub>2</sub>S and Zn<sup>2+</sup> was established by the voltage-controlled degradation of the ZnS nanoparticles (NPs). Consequently, the ZnS nanochip-mediated gas-ionic therapy (GIT) resulted in mitochondrial membrane potential depolarization, energy generation inhibition, and oxidative stress imbalance in tumor cells. Interestingly, the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway was activated due to the mitochondrial destruction. Moreover, the released Zn<sup>2+</sup> resulted in the increase of the intracellular Zn levels and cell pyroptosis, which enhanced the immunogenicity via the release of damage-associated molecular patterns (DAMPs). In vitro and in vivo studies revealed that the ZnS nanochip-based GIT effectively eliminated the tumors under an electric field and mobilized the cytotoxic T lymphocytes for immunotherapy. The combination with αCTLA-4 further promoted the adaptive immune response and inhibited tumor metastasis and long-term tumor recurrence. This work presented an electrically activable ZnS nanochip for combined immunotherapy, which might inspire the development of electric stimulation therapy.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2024.11.035","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Excess intracellular H2S induces destructive mitochondrial toxicity, while overload of Zn2+ results in cell pyroptosis and potentiates the tumor immunogenicity for immunotherapy. However, the precise delivery of both therapeutics remains a great challenge. Herein, an electrically activable ZnS nanochip for the controlled release of H2S and Zn2+ was developed for enhanced gas-ionic-immunotherapy (GIIT). Under an electric field, a locality with particularly high concentrations of H2S and Zn2+ was established by the voltage-controlled degradation of the ZnS nanoparticles (NPs). Consequently, the ZnS nanochip-mediated gas-ionic therapy (GIT) resulted in mitochondrial membrane potential depolarization, energy generation inhibition, and oxidative stress imbalance in tumor cells. Interestingly, the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway was activated due to the mitochondrial destruction. Moreover, the released Zn2+ resulted in the increase of the intracellular Zn levels and cell pyroptosis, which enhanced the immunogenicity via the release of damage-associated molecular patterns (DAMPs). In vitro and in vivo studies revealed that the ZnS nanochip-based GIT effectively eliminated the tumors under an electric field and mobilized the cytotoxic T lymphocytes for immunotherapy. The combination with αCTLA-4 further promoted the adaptive immune response and inhibited tumor metastasis and long-term tumor recurrence. This work presented an electrically activable ZnS nanochip for combined immunotherapy, which might inspire the development of electric stimulation therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
期刊最新文献
Single-cell multi-omics analysis revealing immune features of inactivated COVID-19 vaccination in systemic lupus erythematosus patients. Zosurabalpin like petrichor: a novel antibiotic class with unprecedented target towards Acinetobacter baumannii. Highly sensitive and specific uranyl ion detection by a fluorescent sensor containing uranyl-specific recognition sites. Mercury deposition in central China from the Last Glacial Maximum to the early Holocene recorded in an accurately-dated stalagmite. Phase transition thermosensitive photocatalytic hydrogel for enhanced uranium extraction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1