Impact of field evolved resistance on biological parameters of non-targeted Aedes aegypti populations.

IF 2.4 4区 环境科学与生态学 Q2 ECOLOGY Ecotoxicology Pub Date : 2024-12-13 DOI:10.1007/s10646-024-02842-z
Nimra Batool, Muhammad Asif Farooq, Waqar Jaleel, Ahmed Noureldeen, Akram Alghamdi, Hadeer Darwish, Naif H Ashri, Muhammad Nadir Naqqash
{"title":"Impact of field evolved resistance on biological parameters of non-targeted Aedes aegypti populations.","authors":"Nimra Batool, Muhammad Asif Farooq, Waqar Jaleel, Ahmed Noureldeen, Akram Alghamdi, Hadeer Darwish, Naif H Ashri, Muhammad Nadir Naqqash","doi":"10.1007/s10646-024-02842-z","DOIUrl":null,"url":null,"abstract":"<p><p>The yellow fever mosquito, Aedes aegypti L., known for transmitting viruses causing yellow fever, dengue, chikungunya, and Zika fever, presents a substantial risk to global human health. The development of insecticide resistance in disease vectors has become a significant problem in Ae. aegypti. Monitoring insecticide resistance is essential for resistance management in Ae. aegypti. This study involved the collection of Ae. aegypti populations from four important cotton-growing regions in southern Punjab, Pakistan, for resistance monitoring over a two-year period (2021-2022). This study also assessed the impact of insecticide resistance on biological parameters of Ae. aegypti. Moderate-to-high levels of resistance were observed against all the tested insecticides viz., chlorpyrifos, chlorfenapyr, deltamethrin, flonicamid, spirotetramat, and spinetoram. However, compared to the Lab-susceptible population, higher levels of resistance to buprofezin (59.03-84.40) and imidacloprid (68.49-100.01) were found in all populations. This high resistance can be attributed to increased use of these two insecticides in cotton fields, as compared to other insecticides. In the lab-susceptible population, higher values for the intrinsic rate of increase (r) and the net reproductive rate (R<sub>0</sub>) i.e., 0.20 per day and 23.24 offspring/female were observed, respectively. This was also validated by population projection data where more than 2.5-fold adults (1,020,361.80 individuals) were calculated in the Lab-susceptible population as compared to the most resistant populations. Sublethal exposure to insecticides may induce physiological or biochemical changes in organisms, subsequently influencing the biological traits. Resistance monitoring provides essential guidance before launching a successful chemical-based vector management program.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02842-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The yellow fever mosquito, Aedes aegypti L., known for transmitting viruses causing yellow fever, dengue, chikungunya, and Zika fever, presents a substantial risk to global human health. The development of insecticide resistance in disease vectors has become a significant problem in Ae. aegypti. Monitoring insecticide resistance is essential for resistance management in Ae. aegypti. This study involved the collection of Ae. aegypti populations from four important cotton-growing regions in southern Punjab, Pakistan, for resistance monitoring over a two-year period (2021-2022). This study also assessed the impact of insecticide resistance on biological parameters of Ae. aegypti. Moderate-to-high levels of resistance were observed against all the tested insecticides viz., chlorpyrifos, chlorfenapyr, deltamethrin, flonicamid, spirotetramat, and spinetoram. However, compared to the Lab-susceptible population, higher levels of resistance to buprofezin (59.03-84.40) and imidacloprid (68.49-100.01) were found in all populations. This high resistance can be attributed to increased use of these two insecticides in cotton fields, as compared to other insecticides. In the lab-susceptible population, higher values for the intrinsic rate of increase (r) and the net reproductive rate (R0) i.e., 0.20 per day and 23.24 offspring/female were observed, respectively. This was also validated by population projection data where more than 2.5-fold adults (1,020,361.80 individuals) were calculated in the Lab-susceptible population as compared to the most resistant populations. Sublethal exposure to insecticides may induce physiological or biochemical changes in organisms, subsequently influencing the biological traits. Resistance monitoring provides essential guidance before launching a successful chemical-based vector management program.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
埃及伊蚊传播黄热病、登革热、基孔肯雅热和寨卡热等病毒,对全球人类健康构成严重威胁。病媒对杀虫剂产生抗药性已成为埃及姬蚊的一个重大问题。监测杀虫剂抗药性对于埃及蚁的抗药性管理至关重要。本研究从巴基斯坦旁遮普省南部四个重要的棉花种植区采集埃及蚁种群,进行为期两年(2021-2022 年)的抗药性监测。这项研究还评估了杀虫剂抗药性对埃及蚁生物参数的影响。在所有测试的杀虫剂(即毒死蜱、氯虫苯甲酰胺、溴氰菊酯、氟啶虫酰胺、螺虫甲酰胺和螺虫乙酯)上都观察到了中高水平的抗药性。然而,与实验室易感种群相比,所有种群对氟虫腈(59.03-84.40)和吡虫啉(68.49-100.01)的抗性水平都较高。与其他杀虫剂相比,这两种杀虫剂在棉田中的使用量增加,因此产生了较高的抗药性。在实验室抗性种群中,观察到较高的内在增长率(r)和净生殖率(R0),即分别为每天 0.20 和 23.24 个后代/雌虫。种群预测数据也验证了这一点,与抗药性最强的种群相比,实验室易感种群的成虫数量增加了 2.5 倍(1,020,361.80 头)。亚致死接触杀虫剂可能会诱发生物的生理或生化变化,进而影响生物性状。抗药性监测为成功启动基于化学品的病媒管理计划提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecotoxicology
Ecotoxicology 环境科学-毒理学
CiteScore
5.30
自引率
3.70%
发文量
107
审稿时长
4.7 months
期刊介绍: Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.
期刊最新文献
Impact of field evolved resistance on biological parameters of non-targeted Aedes aegypti populations. Evaluation of enzymatic and non-enzymatic biomarkers of sublethal cadmium toxicity in the freshwater mussel (Unio tigridis). Hidden target, hidden effects: chlorantraniliprole on the coffee leaf miner (Leucoptera coffeella). Ecotoxicological evaluation of urban wastewater treatment plants: a Sicilian study. Ecological risk assessment of p-toluidine in freshwater, sediment, and soil media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1