Choice of Link Functions for Generalized Linear Mixed Models in Meta-Analyses of Proportions.

Lianne K Siegel, Milena Silva, Lifeng Lin, Yong Chen, Yu-Lun Liu, Haitao Chu
{"title":"Choice of Link Functions for Generalized Linear Mixed Models in Meta-Analyses of Proportions.","authors":"Lianne K Siegel, Milena Silva, Lifeng Lin, Yong Chen, Yu-Lun Liu, Haitao Chu","doi":"10.1177/26320843231224808","DOIUrl":null,"url":null,"abstract":"<p><p>Two-step approaches for synthesizing proportions in a meta-analysis require first transforming the proportions to a scale where their distribution across studies can be approximated by a normal distribution. Commonly used transformations include the log, logit, arcsine, and Freeman-Tukey double-arcsine transformations. Alternatively, a generalized linear mixed model (GLMM) can be fit directly on the data using the exact binomial likelihood. Unlike popular two-step methods, this accounts for uncertainty in the within-study variances without a normal approximation and does not require an <i>ad hoc</i> correction for zero counts. However, GLMMs require choosing a link function; we illustrate how the AIC can be used to choose the best-fitting link when different link functions give different results. We also highlight how misspecification of the link function can introduce bias; using an empirical sandwich estimator for the standard error may not sufficiently avoid undercoverage due to link function misspecification. We demonstrate the application of GLMMs and choice of link function using data from a systematic review on the prevalence of fever in children with COVID-19.</p>","PeriodicalId":74683,"journal":{"name":"Research methods in medicine & health sciences","volume":"6 1","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research methods in medicine & health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26320843231224808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-step approaches for synthesizing proportions in a meta-analysis require first transforming the proportions to a scale where their distribution across studies can be approximated by a normal distribution. Commonly used transformations include the log, logit, arcsine, and Freeman-Tukey double-arcsine transformations. Alternatively, a generalized linear mixed model (GLMM) can be fit directly on the data using the exact binomial likelihood. Unlike popular two-step methods, this accounts for uncertainty in the within-study variances without a normal approximation and does not require an ad hoc correction for zero counts. However, GLMMs require choosing a link function; we illustrate how the AIC can be used to choose the best-fitting link when different link functions give different results. We also highlight how misspecification of the link function can introduce bias; using an empirical sandwich estimator for the standard error may not sufficiently avoid undercoverage due to link function misspecification. We demonstrate the application of GLMMs and choice of link function using data from a systematic review on the prevalence of fever in children with COVID-19.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比例元分析中广义线性混合模型连接函数的选择。
在荟萃分析中综合比例的两步法要求首先将比例转换成一个尺度,使其在不同研究中的分布可以近似于正态分布。常用的转换包括对数、对数、弧线和 Freeman-Tukey 双弧线转换。另外,也可以使用精确二项似然法在数据上直接拟合广义线性混合模型(GLMM)。与流行的两步法不同,这种方法无需正态近似就能考虑到研究内方差的不确定性,也不需要对零计数进行特别校正。然而,GLMM 需要选择一个链接函数;我们将说明当不同的链接函数给出不同的结果时,如何使用 AIC 来选择最佳拟合链接。我们还强调了链接函数的错误指定会如何带来偏差;使用经验三明治估计标准误差可能无法充分避免链接函数错误指定导致的覆盖不足。我们使用 COVID-19 儿童发热患病率的系统综述数据来演示 GLMMs 的应用和链接函数的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Choice of Link Functions for Generalized Linear Mixed Models in Meta-Analyses of Proportions. Disclosure of suicidal ideation in non-psychiatric clinical research: Experience using a novel suicide risk management algorithm in a multi-center smoking cessation trial Dynamic relationship among immediate release fentanyl use and cancer incidence: A multivariate time-series analysis using vector autoregressive models Monitoring metrics over time: Why clinical trialists need to systematically collect site performance metrics. Editorial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1