A Bayesian joint model for mediation analysis with matrix-valued mediators.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae143
Zijin Liu, Zhihui Amy Liu, Ali Hosni, John Kim, Bei Jiang, Olli Saarela
{"title":"A Bayesian joint model for mediation analysis with matrix-valued mediators.","authors":"Zijin Liu, Zhihui Amy Liu, Ali Hosni, John Kim, Bei Jiang, Olli Saarela","doi":"10.1093/biomtc/ujae143","DOIUrl":null,"url":null,"abstract":"<p><p>Unscheduled treatment interruptions may lead to reduced quality of care in radiation therapy (RT). Identifying the RT prescription dose effects on the outcome of treatment interruptions, mediated through doses distributed into different organs at risk (OARs), can inform future treatment planning. The radiation exposure to OARs can be summarized by a matrix of dose-volume histograms (DVH) for each patient. Although various methods for high-dimensional mediation analysis have been proposed recently, few studies investigated how matrix-valued data can be treated as mediators. In this paper, we propose a novel Bayesian joint mediation model for high-dimensional matrix-valued mediators. In this joint model, latent features are extracted from the matrix-valued data through an adaptation of probabilistic multilinear principal components analysis (MPCA), retaining the inherent matrix structure. We derive and implement a Gibbs sampling algorithm to jointly estimate all model parameters, and introduce a Varimax rotation method to identify active indicators of mediation among the matrix-valued data. Our simulation study finds that the proposed joint model has higher efficiency in estimating causal decomposition effects compared to an alternative two-step method, and demonstrates that the mediation effects can be identified and visualized in the matrix form. We apply the method to study the effect of prescription dose on treatment interruptions in anal canal cancer patients.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae143","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Unscheduled treatment interruptions may lead to reduced quality of care in radiation therapy (RT). Identifying the RT prescription dose effects on the outcome of treatment interruptions, mediated through doses distributed into different organs at risk (OARs), can inform future treatment planning. The radiation exposure to OARs can be summarized by a matrix of dose-volume histograms (DVH) for each patient. Although various methods for high-dimensional mediation analysis have been proposed recently, few studies investigated how matrix-valued data can be treated as mediators. In this paper, we propose a novel Bayesian joint mediation model for high-dimensional matrix-valued mediators. In this joint model, latent features are extracted from the matrix-valued data through an adaptation of probabilistic multilinear principal components analysis (MPCA), retaining the inherent matrix structure. We derive and implement a Gibbs sampling algorithm to jointly estimate all model parameters, and introduce a Varimax rotation method to identify active indicators of mediation among the matrix-valued data. Our simulation study finds that the proposed joint model has higher efficiency in estimating causal decomposition effects compared to an alternative two-step method, and demonstrates that the mediation effects can be identified and visualized in the matrix form. We apply the method to study the effect of prescription dose on treatment interruptions in anal canal cancer patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵值中介分析的贝叶斯联合模型。
计划外的治疗中断可能导致放射治疗(RT)的护理质量下降。通过分布到不同危险器官(OARs)的剂量,确定RT处方剂量对治疗中断结果的影响,可以为未来的治疗计划提供信息。OARs的辐射暴露可以通过每个患者的剂量-体积直方图(DVH)矩阵来总结。虽然最近提出了各种高维中介分析方法,但很少有研究探讨如何将矩阵值数据作为中介。本文针对高维矩阵值中介,提出了一种新的贝叶斯联合中介模型。在该联合模型中,通过自适应概率多线性主成分分析(MPCA)从矩阵值数据中提取潜在特征,保留了固有的矩阵结构。我们推导并实现了Gibbs抽样算法来联合估计所有模型参数,并引入了一种Varimax旋转方法来识别矩阵值数据之间的中介活动指标。我们的模拟研究发现,与替代的两步方法相比,所提出的联合模型在估计因果分解效应方面具有更高的效率,并证明中介效应可以以矩阵形式识别和可视化。应用该方法研究处方剂量对肛管癌患者治疗中断的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Gaussian processes for time series with lead-lag effects with applications to biology data. Weighted Q-learning for optimal dynamic treatment regimes with nonignorable missing covariates. Causal inference with cross-temporal design. Distributed model building and recursive integration for big spatial data modeling. Robust Bayesian graphical regression models for assessing tumor heterogeneity in proteomic networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1