Highly efficient adsorption of natural organic matter from aqueous solutions by macroporous weakly basic anion exchange resin: performance, mechanism, and fixed - bed column.
{"title":"Highly efficient adsorption of natural organic matter from aqueous solutions by macroporous weakly basic anion exchange resin: performance, mechanism, and fixed - bed column.","authors":"Xingdi Ma, Yangxue Liu, Zhonglin Chen, Yingxu Gong, Binyuan Wang, Jimin Shen, Jing Kang, Pengwei Yan, Shengxin Zhao","doi":"10.1080/10934529.2024.2433361","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, humic acid was used as a model pollutant to investigate the removal effect of a macroporous weakly alkaline anion exchange resin D301 on natural organic matter (NOM) in water. 3D fluorescence spectroscopy, UV - visible spectrophotometry and Fourier transform infrared (FTIR) spectroscopy were employed to analyze changes in the physical and chemical properties of humic acid solution and natural water samples before and after resin adsorption. The results showed that using humic acid as a model pollutant to simulate NOM in water is feasible. Through kinetic and thermodynamic analysis, ion exchange was identified as the dominant mechanism for the adsorption of organic matter by D301 resin. According to the Langmuir adsorption isotherm, the maximum adsorption capacity of the resin was 37.78 mg/g. The adsorption of NOM by the exchange resin effectively conformed to the Thomas, Yoon - Nelson, and BDST models, offering a reliable basis for practical application prediction. Using sodium chloride solution as the regeneration solution for D301 resin column, after several regenerations, the adsorption efficiency of the resin did not change significantly, which indicated that the anion - exchange resin can be used as an efficient and reusable adsorbent for the removal of NOM from water.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"1-13"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2433361","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, humic acid was used as a model pollutant to investigate the removal effect of a macroporous weakly alkaline anion exchange resin D301 on natural organic matter (NOM) in water. 3D fluorescence spectroscopy, UV - visible spectrophotometry and Fourier transform infrared (FTIR) spectroscopy were employed to analyze changes in the physical and chemical properties of humic acid solution and natural water samples before and after resin adsorption. The results showed that using humic acid as a model pollutant to simulate NOM in water is feasible. Through kinetic and thermodynamic analysis, ion exchange was identified as the dominant mechanism for the adsorption of organic matter by D301 resin. According to the Langmuir adsorption isotherm, the maximum adsorption capacity of the resin was 37.78 mg/g. The adsorption of NOM by the exchange resin effectively conformed to the Thomas, Yoon - Nelson, and BDST models, offering a reliable basis for practical application prediction. Using sodium chloride solution as the regeneration solution for D301 resin column, after several regenerations, the adsorption efficiency of the resin did not change significantly, which indicated that the anion - exchange resin can be used as an efficient and reusable adsorbent for the removal of NOM from water.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.