Biocompatible hydrogel electrolyte with high ionic conductivity and transference number towards dendrite-free Zn anodes

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-15 DOI:10.1016/j.jmst.2024.11.030
Qianhui Zhang, Yingxin Zhang, Lanzhi Ke, Haonan Jiang, Yuan Huang, Zanxiang Nie, Shunyu Jin
{"title":"Biocompatible hydrogel electrolyte with high ionic conductivity and transference number towards dendrite-free Zn anodes","authors":"Qianhui Zhang, Yingxin Zhang, Lanzhi Ke, Haonan Jiang, Yuan Huang, Zanxiang Nie, Shunyu Jin","doi":"10.1016/j.jmst.2024.11.030","DOIUrl":null,"url":null,"abstract":"Hydrogel electrolytes based on natural polymers have attracted increasing attention in zinc-ion batteries (ZIBs) powering wearable and implantable electronics, but designing natural polymer hydrogels with high ionic conductivity, excellent transference performance, and inhibited Zn dendrites is still challenging. Herein, two natural biocompatible polymers (sodium alginate (SA) and agarose (AG)) are used to prepare composite hydrogel electrolytes ensuring electrostatic interaction between –COO<sup>–</sup> groups in SA and Zn<sup>2+</sup> and coordination between C–O–C groups in AG and Zn<sup>2+</sup>. The as-obtained hydrogels exhibit an elevated ionic conductivity (25.05 mS cm<sup>−1</sup>) with a high transference number (0.75), useful for facilitated efficient Zn<sup>2+</sup> transport. The theoretical calculations combined with experimental results reveal C–O–C groups endowing the as-prepared hydrogels with improved desolvation kinetics and capture ability of Zn<sup>2+</sup> for achieving dendrite-free Zn deposition. In this way, the assembled Zn symmetric cell shows a long cycle life reaching 700 h at 0.2 mA cm<sup>−2</sup>. The exceptional biocompatibility of the hydrogels also results in cell viability assay with a survival rate above 93.5%. Overall, the proposed hydrogel electrolytes endow solid-state ZIBs with high discharge capacity, outstanding rate performance, long cycle life, good antifreeze capability, and impressive flexibility, useful features for future design and development of advanced ZIBs.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"21 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.030","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel electrolytes based on natural polymers have attracted increasing attention in zinc-ion batteries (ZIBs) powering wearable and implantable electronics, but designing natural polymer hydrogels with high ionic conductivity, excellent transference performance, and inhibited Zn dendrites is still challenging. Herein, two natural biocompatible polymers (sodium alginate (SA) and agarose (AG)) are used to prepare composite hydrogel electrolytes ensuring electrostatic interaction between –COO groups in SA and Zn2+ and coordination between C–O–C groups in AG and Zn2+. The as-obtained hydrogels exhibit an elevated ionic conductivity (25.05 mS cm−1) with a high transference number (0.75), useful for facilitated efficient Zn2+ transport. The theoretical calculations combined with experimental results reveal C–O–C groups endowing the as-prepared hydrogels with improved desolvation kinetics and capture ability of Zn2+ for achieving dendrite-free Zn deposition. In this way, the assembled Zn symmetric cell shows a long cycle life reaching 700 h at 0.2 mA cm−2. The exceptional biocompatibility of the hydrogels also results in cell viability assay with a survival rate above 93.5%. Overall, the proposed hydrogel electrolytes endow solid-state ZIBs with high discharge capacity, outstanding rate performance, long cycle life, good antifreeze capability, and impressive flexibility, useful features for future design and development of advanced ZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有高离子电导率和向无枝晶锌阳极转移数的生物相容性水凝胶电解质
基于天然聚合物的水凝胶电解质在为可穿戴和植入式电子设备供电的锌离子电池(zbs)中引起了越来越多的关注,但设计具有高离子电导率、优异转移性能和抑制Zn枝晶的天然聚合物水凝胶仍然具有挑战性。本文采用海藻酸钠(SA)和琼脂糖(AG)两种天然生物相容性聚合物制备复合水凝胶电解质,保证了SA与Zn2+中- coo -基团之间的静电相互作用以及AG与Zn2+中C-O-C基团之间的配位。所得水凝胶具有较高的离子电导率(25.05 mS cm−1)和较高的转移数(0.75),有利于Zn2+的高效传输。理论计算与实验结果相结合表明,C-O-C基团使制备的水凝胶具有更好的脱溶动力学和Zn2+捕获能力,从而实现无枝晶Zn沉积。通过这种方法,组装的锌对称电池在0.2 mA cm−2下的循环寿命达到700小时。水凝胶优异的生物相容性也使其在细胞活力测定中具有93.5%以上的存活率。总体而言,所提出的水凝胶电解质赋予固态ZIBs高放电容量,出色的倍率性能,长循环寿命,良好的防冻能力和令人印象深刻的灵活性,为未来设计和开发先进的ZIBs提供了有用的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1