Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-25 DOI:10.1016/j.jmst.2025.01.003
Abdul Malik, Sehreish Abrar, Faisal Nazeer, Umer Masood Chaudry, Zheng Chen
{"title":"Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach","authors":"Abdul Malik, Sehreish Abrar, Faisal Nazeer, Umer Masood Chaudry, Zheng Chen","doi":"10.1016/j.jmst.2025.01.003","DOIUrl":null,"url":null,"abstract":"Achieving ballistic impact resistance in a lightweight magnesium (Mg) alloy is a requirement of the aerospace and military industries. However, Mg alloy has poor ballistic impact resistance, mainly attributed to its soft nature and hexagonal close-packed (HCP) crystal structure. In the current study, we reported that the die-casted Mg-Gd-Y-Zn (WEZ) alloy displayed high ballistic impact resistance against a 7.62 mm steel core projectile under both low and high-velocity impact. Most specifically, a perfect ballistic impact resistance is achieved at velocities of 344 and 605 m s<sup>−1</sup>, having a depth of penetration of ∼ 12 and ∼ 25 mm, respectively. In addition, for a very high velocity of 810 m s<sup>−1</sup>, the projectile was impeded in the sheet but at the cost of a small hole/scab on the rear face. The potential reason is the “fibrous microstructure”, comprised of profuse blocky type long period stacking order (LPSO<sub>s</sub>), rod type LPSO<sub>s</sub>, lamellar LPSO<sub>s</sub>, and some rare earth (RE) enriched precipitates. These “microstructure features” act like a fiber reinforced α-Mg and play a decisive role in achieving high strength at super elevated temperature compression (500°C) under a high strain rate (∼ 4000 s<sup>−1</sup>), even much higher compared to 4000 s<sup>−1</sup> at room temperature. As a result, this characteristic of WEZ Mg alloy leads to a high absorption capacity at elevated temperatures (90.83 ∼ MJ m<sup>−3</sup>). This high absorption capacity due to high strength at elevated temperatures, fibrous microstructure, and hardness (∼ 80 HV) offered high resistance to impact and shock wave propagation. Consequently, the projectile experienced a high resistance against perforation, and therefore, ballistic impact resistance was achieved. Last but not least, the post-deformation features also help in understanding the stress mitigation of WEZ Mg alloy during ballistic impact, which can be advantageous while designing Mg alloys as a ballistic impact-resistant material.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"58 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.01.003","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving ballistic impact resistance in a lightweight magnesium (Mg) alloy is a requirement of the aerospace and military industries. However, Mg alloy has poor ballistic impact resistance, mainly attributed to its soft nature and hexagonal close-packed (HCP) crystal structure. In the current study, we reported that the die-casted Mg-Gd-Y-Zn (WEZ) alloy displayed high ballistic impact resistance against a 7.62 mm steel core projectile under both low and high-velocity impact. Most specifically, a perfect ballistic impact resistance is achieved at velocities of 344 and 605 m s−1, having a depth of penetration of ∼ 12 and ∼ 25 mm, respectively. In addition, for a very high velocity of 810 m s−1, the projectile was impeded in the sheet but at the cost of a small hole/scab on the rear face. The potential reason is the “fibrous microstructure”, comprised of profuse blocky type long period stacking order (LPSOs), rod type LPSOs, lamellar LPSOs, and some rare earth (RE) enriched precipitates. These “microstructure features” act like a fiber reinforced α-Mg and play a decisive role in achieving high strength at super elevated temperature compression (500°C) under a high strain rate (∼ 4000 s−1), even much higher compared to 4000 s−1 at room temperature. As a result, this characteristic of WEZ Mg alloy leads to a high absorption capacity at elevated temperatures (90.83 ∼ MJ m−3). This high absorption capacity due to high strength at elevated temperatures, fibrous microstructure, and hardness (∼ 80 HV) offered high resistance to impact and shock wave propagation. Consequently, the projectile experienced a high resistance against perforation, and therefore, ballistic impact resistance was achieved. Last but not least, the post-deformation features also help in understanding the stress mitigation of WEZ Mg alloy during ballistic impact, which can be advantageous while designing Mg alloys as a ballistic impact-resistant material.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1