{"title":"Current challenges and development strategies of bacteriocins produced by lactic acid bacteria applied in the food industry.","authors":"Qingping Liang, Zhemin Liu, Ziyu Liang, Xiaodan Fu, Dongyu Li, Changliang Zhu, Qing Kong, Haijin Mou","doi":"10.1111/1541-4337.70038","DOIUrl":null,"url":null,"abstract":"<p><p>Given the great importance of natural biopreservatives in the modern food industry, lactic acid bacteria (LAB)-producing bacteriocins have gained considerable attention due to their antimicrobial activity against foodborne pathogens and spoilage bacteria. Although numerous LAB-producing bacteriocins have demonstrated efficiency in preserving food quality in various applications, only a limited number of these compounds have been commercially approved to date. The currently unclear gastrointestinal metabolism of bacteriocins may pose safety risks, as well as cytotoxicity and immunogenicity, which need to be seriously considered before their application. A more noteworthy concern lies in whether bacteriocins induce an imbalance in the gut microbiota, thereby leading to alterations in the abundance of health-associated microorganisms and their metabolites in the gastrointestinal tract. Accordingly, this review presents unique insights into the challenges arising from metabolic interactions between LAB-producing bacteriocins and the gastrointestinal tract. Besides, the application of bacteriocins in the food industry faces challenges arising from the low production yield, weak stability, and insufficient antimicrobial activity. The corresponding development strategies are proposed for conducting the systematic and comprehensive evaluation of the potential safety risks of bacteriocins and their metabolites. The strategies also focus on the rational design to increase the activity and stability, the fermentation control to enhance the production yield, and the hurdle and embedding technology to improve the application effects. It definitively discloses the perspective of bacteriocins to become natural, sustainable, safe, and eco-friendly biological preservatives for the advancement of the food industry.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":"e70038"},"PeriodicalIF":12.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1541-4337.70038","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the great importance of natural biopreservatives in the modern food industry, lactic acid bacteria (LAB)-producing bacteriocins have gained considerable attention due to their antimicrobial activity against foodborne pathogens and spoilage bacteria. Although numerous LAB-producing bacteriocins have demonstrated efficiency in preserving food quality in various applications, only a limited number of these compounds have been commercially approved to date. The currently unclear gastrointestinal metabolism of bacteriocins may pose safety risks, as well as cytotoxicity and immunogenicity, which need to be seriously considered before their application. A more noteworthy concern lies in whether bacteriocins induce an imbalance in the gut microbiota, thereby leading to alterations in the abundance of health-associated microorganisms and their metabolites in the gastrointestinal tract. Accordingly, this review presents unique insights into the challenges arising from metabolic interactions between LAB-producing bacteriocins and the gastrointestinal tract. Besides, the application of bacteriocins in the food industry faces challenges arising from the low production yield, weak stability, and insufficient antimicrobial activity. The corresponding development strategies are proposed for conducting the systematic and comprehensive evaluation of the potential safety risks of bacteriocins and their metabolites. The strategies also focus on the rational design to increase the activity and stability, the fermentation control to enhance the production yield, and the hurdle and embedding technology to improve the application effects. It definitively discloses the perspective of bacteriocins to become natural, sustainable, safe, and eco-friendly biological preservatives for the advancement of the food industry.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.