A preliminary exploration of the synergistic preservation effect of electrostatic field and superchilling on muscle foods: Mechanisms, influencing factors, applications, and challenges.
{"title":"A preliminary exploration of the synergistic preservation effect of electrostatic field and superchilling on muscle foods: Mechanisms, influencing factors, applications, and challenges.","authors":"Zhiming Ma, Yuxin Zhang, Aofei Pu, Jing Tian, Zhongshuai Yang, Yuqin Feng, Yuanlv Zhang, Guishan Liu","doi":"10.1111/1541-4337.70066","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle foods that are highly perishable require effective preservation technologies to maintain their quality and extend their shelf life. Electrostatic field (EF) treatment, superchilling (SC), and their combined technologies have received attention for their effectiveness in improving muscle food quality. However, the lack of a comprehensive understanding of their mechanism and combined effects on muscle foods has limited their application. Therefore, the review began with a discussion of the mechanisms, influencing factors, and equipment development underlying EF treatment and SC of muscle foods. It then reviewed the research progress made to date and highlighted the effects of these technologies on various quality attributes, such as texture, color, and nutritional value. Additionally, the review explored the potential synergistic effects of combining these technologies and discussed how they could complement each other to achieve superior preservation outcomes. The EF significantly improves muscle food quality by inhibiting ice crystal growth, blunting enzyme activity, causing microbial electroporation, and generating ozone. SC technology utilizes low temperatures to form an ice crystal shell, effectively inhibiting the reproduction of microorganisms and passivating the activity of enzymes, thereby extending the shelf life. The combination of the two, through the dual inhibition of bacteria and enzymes and the regulation of ice crystals, can build an excellent preservation system to bring a better preservation effect for muscle foods. Future research should prioritize safety issues, equipment cost, and process optimization while exploring innovative applications. This will provide theoretical and technical support for the progress of muscle food preservation technology.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":"e70066"},"PeriodicalIF":12.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1541-4337.70066","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle foods that are highly perishable require effective preservation technologies to maintain their quality and extend their shelf life. Electrostatic field (EF) treatment, superchilling (SC), and their combined technologies have received attention for their effectiveness in improving muscle food quality. However, the lack of a comprehensive understanding of their mechanism and combined effects on muscle foods has limited their application. Therefore, the review began with a discussion of the mechanisms, influencing factors, and equipment development underlying EF treatment and SC of muscle foods. It then reviewed the research progress made to date and highlighted the effects of these technologies on various quality attributes, such as texture, color, and nutritional value. Additionally, the review explored the potential synergistic effects of combining these technologies and discussed how they could complement each other to achieve superior preservation outcomes. The EF significantly improves muscle food quality by inhibiting ice crystal growth, blunting enzyme activity, causing microbial electroporation, and generating ozone. SC technology utilizes low temperatures to form an ice crystal shell, effectively inhibiting the reproduction of microorganisms and passivating the activity of enzymes, thereby extending the shelf life. The combination of the two, through the dual inhibition of bacteria and enzymes and the regulation of ice crystals, can build an excellent preservation system to bring a better preservation effect for muscle foods. Future research should prioritize safety issues, equipment cost, and process optimization while exploring innovative applications. This will provide theoretical and technical support for the progress of muscle food preservation technology.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.