Bacteria-Powered Self-Healing Concrete: Breakthroughs, Challenges, and Future Prospects.

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Industrial Microbiology & Biotechnology Pub Date : 2024-12-13 DOI:10.1093/jimb/kuae051
Ibrahim M Elgendy, Nehal E Elkaliny, Hoda M Saleh, Gehad O Darwish, Mervt M Almostafa, Kamel Metwally, Galal Yahya, Yehia A-G Mahmoud
{"title":"Bacteria-Powered Self-Healing Concrete: Breakthroughs, Challenges, and Future Prospects.","authors":"Ibrahim M Elgendy, Nehal E Elkaliny, Hoda M Saleh, Gehad O Darwish, Mervt M Almostafa, Kamel Metwally, Galal Yahya, Yehia A-G Mahmoud","doi":"10.1093/jimb/kuae051","DOIUrl":null,"url":null,"abstract":"<p><p>In a world where concrete structures face constant degradation from environmental forces, a revolutionary solution has emerged: bio-self-healing concrete. This innovation involves embedding dormant bacteria within the concrete mix, poised to spring into action when cracks form. As moisture seeps into the cracks, these bacterial agents are activated, consuming nutrients and converting them into calcium carbonate, a natural substance that fills and repairs the fractures, restoring the material's integrity. This fascinating process represents a cutting-edge approach to maintaining concrete infrastructure, turning once-vulnerable materials into self-sustaining systems capable of healing themselves. The ongoing research into bio-self-healing concrete is focused on selecting bacterial strains that can withstand the extreme conditions within concrete, including its highly alkaline environment. The bacteria must also form resilient spores, remaining viable until they are needed for repair. Additionally, the study explores various challenges associated with this technology, such as the cost of production, the bacteria's long-term viability, and their potential environmental impact. Advancements in genetic engineering and smart technology are being explored to enhance these bacterial strains, making them more efficient and robust in their role as microscopic repair agents. This review delves into the potential of bio-self-healing concrete to revolutionize how we approach infrastructure maintenance, offering a glimpse into a future where concrete structures not only endure but actively repair themselves, extending their lifespan and reducing the need for costly repairs.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In a world where concrete structures face constant degradation from environmental forces, a revolutionary solution has emerged: bio-self-healing concrete. This innovation involves embedding dormant bacteria within the concrete mix, poised to spring into action when cracks form. As moisture seeps into the cracks, these bacterial agents are activated, consuming nutrients and converting them into calcium carbonate, a natural substance that fills and repairs the fractures, restoring the material's integrity. This fascinating process represents a cutting-edge approach to maintaining concrete infrastructure, turning once-vulnerable materials into self-sustaining systems capable of healing themselves. The ongoing research into bio-self-healing concrete is focused on selecting bacterial strains that can withstand the extreme conditions within concrete, including its highly alkaline environment. The bacteria must also form resilient spores, remaining viable until they are needed for repair. Additionally, the study explores various challenges associated with this technology, such as the cost of production, the bacteria's long-term viability, and their potential environmental impact. Advancements in genetic engineering and smart technology are being explored to enhance these bacterial strains, making them more efficient and robust in their role as microscopic repair agents. This review delves into the potential of bio-self-healing concrete to revolutionize how we approach infrastructure maintenance, offering a glimpse into a future where concrete structures not only endure but actively repair themselves, extending their lifespan and reducing the need for costly repairs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌驱动的自愈合混凝土:突破、挑战和未来前景》(Bacteria-Powered Self-Healing Concrete: Breakthroughs, Challenges, and Future Prospects.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
期刊最新文献
Bacteria-Powered Self-Healing Concrete: Breakthroughs, Challenges, and Future Prospects. Discovery and adaptation of microbes that degrade oxidized low-density polyethylene films. Arts, Cultural Heritage, Sciences and Micro-/Bio-/Techno-/Logy: impact of biomaterials and biocolorants from antiquity till today! Enhancing the erythritol production of Yarrowia lipolytica by high-throughput screening based on highly sensitive artificial sensor and anchor protein cwp2. Development of Modular Expression Across Phylogenetically Distinct Diazotrophs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1