Genetics of Constant and Severe Pain in the NAPS2 Cohort of Recurrent Acute and Chronic Pancreatitis Patients.

IF 4 2区 医学 Q1 CLINICAL NEUROLOGY Journal of Pain Pub Date : 2024-12-12 DOI:10.1016/j.jpain.2024.104754
Ellyn K Dunbar, Phil J Greer, Jami L Saloman, Kathryn M Albers, Dhiraj Yadav, David C Whitcomb, Stephen T Amann, Peter Banks, Randall Brand, Darwin L Conwell, Greg Cote, Christopher E Forsmark, Timothy B Gardner, Nalini M Guda, Michele D Lewis, Jorge D Machicado, Thiruvengadam Muniraj, Georgios I Papachristou, Joseph Romagnuolo, Bimaljit S Sandhu, Vikesh K Singh, Stuart Sherman, Adam Slivka, C Mel Wilcox
{"title":"Genetics of Constant and Severe Pain in the NAPS2 Cohort of Recurrent Acute and Chronic Pancreatitis Patients.","authors":"Ellyn K Dunbar, Phil J Greer, Jami L Saloman, Kathryn M Albers, Dhiraj Yadav, David C Whitcomb, Stephen T Amann, Peter Banks, Randall Brand, Darwin L Conwell, Greg Cote, Christopher E Forsmark, Timothy B Gardner, Nalini M Guda, Michele D Lewis, Jorge D Machicado, Thiruvengadam Muniraj, Georgios I Papachristou, Joseph Romagnuolo, Bimaljit S Sandhu, Vikesh K Singh, Stuart Sherman, Adam Slivka, C Mel Wilcox","doi":"10.1016/j.jpain.2024.104754","DOIUrl":null,"url":null,"abstract":"<p><p>Recurrent acute and chronic pancreatitis (RAP, CP) are complex, progressive inflammatory diseases with variable pain experiences impacting patient function and quality of life. The genetic variants and pain pathways in patients contributing to most severe pain experiences are unknown. We used previously genotyped individuals with RAP/CP from the North American Pancreatitis Study II (NAPS2) of European Ancestry for nested genome-wide associated study (GWAS) for pain-severity, chronicity, or both. Lead variants from GWAS were determined using FUMA. Loci with p<1e-5 were identified for post-hoc candidate identification. Transcriptome-wide association studies (TWAS) identified loci in cis and trans to the lead variants. Serum from phenotyped individuals with CP from the PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translational StuDies (PROCEED) was assessed for BDNF levels using Meso Scale Discovery Immunoassay. We identified four pain systems defined by candidate genes: 1) Pancreas-associated injury/stress mitigation genes include: REG gene cluster, CTRC, NEURL3 and HSF22. 2) Neural development and axon guidance tracing genes include: SNPO, RGMA, MAML1 and DOK6 (part of the RET complex). 3) Genes linked to psychiatric stress disorders include TMEM65, RBFOX1, and ZNF385D. 4) Genes in the dorsal horn pain-modulating BDNF/neuropathic pathway included SYNPR, NTF3 and RBFOX1. In an independent cohort BDNF was significantly elevated in patients with constant-severe pain. Extension and expansion of this exploratory study may identify pathway- and mechanism-dependent targets for individualized pain treatments in CP patients. PERSPECTIVE: Pain is the most distressing and debilitating feature of chronic pancreatitis. Yet many patients with chronic pancreatitis have little or no pain. The North American Pancreatitis Study II (NAPS2) includes over 1250 pancreatitis patients of all progressive stages with all clinical and phenotypic characteristics carefully recorded. Pain did not correlate well with disease stage, inflammation, fibrosis or other features. Here we spit the patients into groups with the most severe pain and/or chronic pain syndromes and compared them genetically with patients reporting mild or minimal pain. Although some genetic variants associated with pain were expressed in cells (1) of the pancreas, most genetic variants were linked to genes expressed in the nervous system cells associated with (2) neural development and axon guidance (as needed for the descending inhibition pathway), (3) psychiatric stress disorders, and (4) cells regulating sensory nerves associated with BDNF and neuropathic pain. Similar and overlapping genetic variants in systems 2 -4 are also seen in pain syndromes form other organs. The implications for treating pancreatic pain are great in that we can no longer focus on just the pancreas. Furthermore, new treatments designed for pain disorders in other tissues may be effective in some patient with pain syndromes from the pancreas. Further research is needed to replicate and extend these observations so that new, genetics-guided rational treatments can be developed and delivered.</p>","PeriodicalId":51095,"journal":{"name":"Journal of Pain","volume":" ","pages":"104754"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpain.2024.104754","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent acute and chronic pancreatitis (RAP, CP) are complex, progressive inflammatory diseases with variable pain experiences impacting patient function and quality of life. The genetic variants and pain pathways in patients contributing to most severe pain experiences are unknown. We used previously genotyped individuals with RAP/CP from the North American Pancreatitis Study II (NAPS2) of European Ancestry for nested genome-wide associated study (GWAS) for pain-severity, chronicity, or both. Lead variants from GWAS were determined using FUMA. Loci with p<1e-5 were identified for post-hoc candidate identification. Transcriptome-wide association studies (TWAS) identified loci in cis and trans to the lead variants. Serum from phenotyped individuals with CP from the PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translational StuDies (PROCEED) was assessed for BDNF levels using Meso Scale Discovery Immunoassay. We identified four pain systems defined by candidate genes: 1) Pancreas-associated injury/stress mitigation genes include: REG gene cluster, CTRC, NEURL3 and HSF22. 2) Neural development and axon guidance tracing genes include: SNPO, RGMA, MAML1 and DOK6 (part of the RET complex). 3) Genes linked to psychiatric stress disorders include TMEM65, RBFOX1, and ZNF385D. 4) Genes in the dorsal horn pain-modulating BDNF/neuropathic pathway included SYNPR, NTF3 and RBFOX1. In an independent cohort BDNF was significantly elevated in patients with constant-severe pain. Extension and expansion of this exploratory study may identify pathway- and mechanism-dependent targets for individualized pain treatments in CP patients. PERSPECTIVE: Pain is the most distressing and debilitating feature of chronic pancreatitis. Yet many patients with chronic pancreatitis have little or no pain. The North American Pancreatitis Study II (NAPS2) includes over 1250 pancreatitis patients of all progressive stages with all clinical and phenotypic characteristics carefully recorded. Pain did not correlate well with disease stage, inflammation, fibrosis or other features. Here we spit the patients into groups with the most severe pain and/or chronic pain syndromes and compared them genetically with patients reporting mild or minimal pain. Although some genetic variants associated with pain were expressed in cells (1) of the pancreas, most genetic variants were linked to genes expressed in the nervous system cells associated with (2) neural development and axon guidance (as needed for the descending inhibition pathway), (3) psychiatric stress disorders, and (4) cells regulating sensory nerves associated with BDNF and neuropathic pain. Similar and overlapping genetic variants in systems 2 -4 are also seen in pain syndromes form other organs. The implications for treating pancreatic pain are great in that we can no longer focus on just the pancreas. Furthermore, new treatments designed for pain disorders in other tissues may be effective in some patient with pain syndromes from the pancreas. Further research is needed to replicate and extend these observations so that new, genetics-guided rational treatments can be developed and delivered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NAPS2 复发性急性和慢性胰腺炎患者队列中持续和严重疼痛的遗传学特征
复发性急性和慢性胰腺炎(RAP、CP)是一种复杂的渐进性炎症性疾病,其不同的疼痛体验会影响患者的功能和生活质量。导致最严重疼痛体验的患者基因变异和疼痛途径尚不清楚。我们利用先前从欧洲血统的北美胰腺炎研究 II(NAPS2)中获得的 RAP/CP 患者基因分型,针对疼痛的严重程度、慢性程度或两者进行了嵌套全基因组关联研究(GWAS)。利用 FUMA 确定了 GWAS 的主导变异。P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pain
Journal of Pain 医学-临床神经学
CiteScore
6.30
自引率
7.50%
发文量
441
审稿时长
42 days
期刊介绍: The Journal of Pain publishes original articles related to all aspects of pain, including clinical and basic research, patient care, education, and health policy. Articles selected for publication in the Journal are most commonly reports of original clinical research or reports of original basic research. In addition, invited critical reviews, including meta analyses of drugs for pain management, invited commentaries on reviews, and exceptional case studies are published in the Journal. The mission of the Journal is to improve the care of patients in pain by providing a forum for clinical researchers, basic scientists, clinicians, and other health professionals to publish original research.
期刊最新文献
Language errors in pain medicine: An umbrella review. Methodology for determining minimally clinically important differences in acute pain intensity with the double stopwatch technique. The effects of autistic traits in adolescents on the efficacy of paediatric Intensive Interdisciplinary Pain Treatment (IIPT). The effect of pain on gait in older people: A systematic review and meta-analysis. Genetics of Constant and Severe Pain in the NAPS2 Cohort of Recurrent Acute and Chronic Pancreatitis Patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1