Tianliang Li, Bin Cao, Tianhao Su, Lixing Lin, Dong Wang, Xinting Liu, Haoyu Wan, Haiwei Ji, Zixuan He, Yingying Chen, Lingyan Feng, Tong‐Yi Zhang
{"title":"Machine Learning‐Engineered Nanozyme System for Synergistic Anti‐Tumor Ferroptosis/Apoptosis Therapy","authors":"Tianliang Li, Bin Cao, Tianhao Su, Lixing Lin, Dong Wang, Xinting Liu, Haoyu Wan, Haiwei Ji, Zixuan He, Yingying Chen, Lingyan Feng, Tong‐Yi Zhang","doi":"10.1002/smll.202408750","DOIUrl":null,"url":null,"abstract":"Nanozymes with multienzyme‐like activity have sparked significant interest in anti‐tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe‐Arg‐CDs@ZIF‐8/HAD, FZH) is shown, which enhances synergistic anti‐tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree‐Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide‐and‐conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme‐based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti‐tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme‐based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"22 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408750","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanozymes with multienzyme‐like activity have sparked significant interest in anti‐tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe‐Arg‐CDs@ZIF‐8/HAD, FZH) is shown, which enhances synergistic anti‐tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree‐Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide‐and‐conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme‐based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti‐tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme‐based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.