Cheng Zhong, Peng Liu, Xuechong Ren, Benli Luan, Alex A. Volinsky
{"title":"Effect of Inconel 625 coating via high-speed laser direct energy deposition on the fatigue characteristics of Q235 steel","authors":"Cheng Zhong, Peng Liu, Xuechong Ren, Benli Luan, Alex A. Volinsky","doi":"10.1016/j.ijfatigue.2024.108746","DOIUrl":null,"url":null,"abstract":"Single-layer and double-layer Inconel 625 coatings were deposited on the Q235 steel using high-speed laser direct energy deposition (HL-DED). Steel grains in heat-affected zone (HAZ) coarsened due to the heat generated during the single-layer coating deposition. In contrast, double-layer coating specimens exhibited fine-grain regions in the HAZ due to repeated laser treatment reaching the solid-state phase transition temperature. Compared to bare Q235 steel, the yield and ultimate tensile strength of the single-layer coated specimens increased by 25% and 21%, respectively, while their elongation decreased by 32%. Tensile strength increased, while elongation decreased with the coating thickness. Although fatigue performance of bulk HL-DED Inconel 625 and as-deposited coating specimens was lower than bare Q235 steel, polished coated specimens exhibited better fatigue performance than bare Q235 steel. The coating thickness in the as-deposited condition had minimal impact on fatigue performance, but the fatigue performance of the polished coated specimens decreased with coating thickness. Corrosion fatigue life of the single-layer coated specimens in a 3.5% NaCl solution was three times better than bare Q235, and the fatigue life of double-layer coated specimens is not affected by the corrosive environment.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"120 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2024.108746","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-layer and double-layer Inconel 625 coatings were deposited on the Q235 steel using high-speed laser direct energy deposition (HL-DED). Steel grains in heat-affected zone (HAZ) coarsened due to the heat generated during the single-layer coating deposition. In contrast, double-layer coating specimens exhibited fine-grain regions in the HAZ due to repeated laser treatment reaching the solid-state phase transition temperature. Compared to bare Q235 steel, the yield and ultimate tensile strength of the single-layer coated specimens increased by 25% and 21%, respectively, while their elongation decreased by 32%. Tensile strength increased, while elongation decreased with the coating thickness. Although fatigue performance of bulk HL-DED Inconel 625 and as-deposited coating specimens was lower than bare Q235 steel, polished coated specimens exhibited better fatigue performance than bare Q235 steel. The coating thickness in the as-deposited condition had minimal impact on fatigue performance, but the fatigue performance of the polished coated specimens decreased with coating thickness. Corrosion fatigue life of the single-layer coated specimens in a 3.5% NaCl solution was three times better than bare Q235, and the fatigue life of double-layer coated specimens is not affected by the corrosive environment.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.