{"title":"Discretisation of an Oldroyd-B viscoelastic fluid flow using a Lie derivative formulation","authors":"Ben S. Ashby, Tristan Pryer","doi":"10.1007/s10444-024-10211-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with a detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10211-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10211-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with a detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.