An adaptive enrichment design using Bayesian model averaging for selection and threshold-identification of predictive variables.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae141
Lara Maleyeff, Shirin Golchi, Erica E M Moodie, Marie Hudson
{"title":"An adaptive enrichment design using Bayesian model averaging for selection and threshold-identification of predictive variables.","authors":"Lara Maleyeff, Shirin Golchi, Erica E M Moodie, Marie Hudson","doi":"10.1093/biomtc/ujae141","DOIUrl":null,"url":null,"abstract":"<p><p>Precision medicine is transforming healthcare by offering tailored treatments that enhance patient outcomes and reduce costs. As our understanding of complex diseases improves, clinical trials increasingly aim to detect subgroups of patients with enhanced treatment effects. Biomarker-driven adaptive enrichment designs, which initially enroll a broad population and later restrict to treatment-sensitive patients, are gaining popularity. However, current practice often assumes either pre-trial knowledge of biomarkers or a simple, linear relationship between continuous markers and treatment effectiveness. Motivated by a trial studying rheumatoid arthritis treatment, we propose a Bayesian adaptive enrichment design to identify predictive variables from a larger set of candidate biomarkers. Our approach uses a flexible modeling framework where the effects of continuous biomarkers are represented using free knot B-splines. We then estimate key parameters by marginalizing over all possible variable combinations using Bayesian model averaging. At interim analyses, we assess whether a biomarker-defined subgroup has enhanced or reduced treatment effects, allowing for early termination for efficacy or futility and restricting future enrollment to treatment-sensitive patients. We consider both pre-categorized and continuous biomarkers, the latter potentially having complex, nonlinear relationships to the outcome and treatment effect. Through simulations, we derive the operating characteristics of our design and compare its performance to existing methods.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae141","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Precision medicine is transforming healthcare by offering tailored treatments that enhance patient outcomes and reduce costs. As our understanding of complex diseases improves, clinical trials increasingly aim to detect subgroups of patients with enhanced treatment effects. Biomarker-driven adaptive enrichment designs, which initially enroll a broad population and later restrict to treatment-sensitive patients, are gaining popularity. However, current practice often assumes either pre-trial knowledge of biomarkers or a simple, linear relationship between continuous markers and treatment effectiveness. Motivated by a trial studying rheumatoid arthritis treatment, we propose a Bayesian adaptive enrichment design to identify predictive variables from a larger set of candidate biomarkers. Our approach uses a flexible modeling framework where the effects of continuous biomarkers are represented using free knot B-splines. We then estimate key parameters by marginalizing over all possible variable combinations using Bayesian model averaging. At interim analyses, we assess whether a biomarker-defined subgroup has enhanced or reduced treatment effects, allowing for early termination for efficacy or futility and restricting future enrollment to treatment-sensitive patients. We consider both pre-categorized and continuous biomarkers, the latter potentially having complex, nonlinear relationships to the outcome and treatment effect. Through simulations, we derive the operating characteristics of our design and compare its performance to existing methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精准医疗正在改变医疗保健,提供量身定制的治疗方案,提高患者疗效并降低成本。随着我们对复杂疾病的理解不断加深,临床试验越来越多地以检测治疗效果更佳的患者亚群为目标。生物标志物驱动的适应性富集设计越来越受欢迎,这种设计最初会招募广泛的人群,之后再将其限制在对治疗敏感的患者范围内。然而,目前的做法往往假定试验前已了解生物标记物或连续标记物与治疗效果之间存在简单的线性关系。受一项研究类风湿性关节炎治疗的试验的启发,我们提出了一种贝叶斯自适应富集设计,从更大的候选生物标记物集合中识别预测变量。我们的方法采用了灵活的建模框架,其中连续生物标记物的影响用自由结 B 样条来表示。然后,我们利用贝叶斯模型平均法对所有可能的变量组合进行边际化,从而估算出关键参数。在中期分析中,我们会评估生物标记物定义的亚组是否增强或降低了治疗效果,从而允许因疗效或无效而提前终止治疗,并将未来的入组患者限制在对治疗敏感的患者范围内。我们考虑了预分类生物标记物和连续生物标记物,后者可能与结果和治疗效果存在复杂的非线性关系。通过模拟,我们得出了设计的运行特征,并将其性能与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1