Semi-supervised 3D retinal fluid segmentation via correlation mutual learning with global reasoning attention.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2024-11-21 eCollection Date: 2024-12-01 DOI:10.1364/BOE.541655
Kaizhi Cao, Yi Liu, Xinhao Zeng, Xiaoyang Qin, Renxiong Wu, Ling Wan, Bolin Deng, Jie Zhong, Guangming Ni, Yong Liu
{"title":"Semi-supervised 3D retinal fluid segmentation via correlation mutual learning with global reasoning attention.","authors":"Kaizhi Cao, Yi Liu, Xinhao Zeng, Xiaoyang Qin, Renxiong Wu, Ling Wan, Bolin Deng, Jie Zhong, Guangming Ni, Yong Liu","doi":"10.1364/BOE.541655","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate 3D segmentation of fluid lesions in optical coherence tomography (OCT) is crucial for the early diagnosis of diabetic macular edema (DME). However, higher-dimensional spatial complexity and limited annotated data present significant challenges for effective 3D lesion segmentation. To address these issues, we propose a novel semi-supervised strategy using a correlation mutual learning framework for segmenting 3D DME lesions from 3D OCT images. Our method integrates three key innovations: (1) a shared encoder with three parallel, slightly different decoders, exhibiting cognitive biases and calculating statistical discrepancies among the decoders to represent uncertainty in unlabeled challenging regions. (2) a global reasoning attention module integrated into the encoder's output to transfer label prior knowledge to unlabeled data; and (3) a correlation mutual learning scheme, enforcing mutual consistency between one decoder's probability map and the soft pseudo labels generated by the other decoders. Extensive experiments demonstrate that our approach outperforms state-of-the-art (SOTA) methods, highlighting the potential of our framework for tackling the complex task of 3D retinal lesion segmentation.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 12","pages":"6905-6921"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640579/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.541655","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate 3D segmentation of fluid lesions in optical coherence tomography (OCT) is crucial for the early diagnosis of diabetic macular edema (DME). However, higher-dimensional spatial complexity and limited annotated data present significant challenges for effective 3D lesion segmentation. To address these issues, we propose a novel semi-supervised strategy using a correlation mutual learning framework for segmenting 3D DME lesions from 3D OCT images. Our method integrates three key innovations: (1) a shared encoder with three parallel, slightly different decoders, exhibiting cognitive biases and calculating statistical discrepancies among the decoders to represent uncertainty in unlabeled challenging regions. (2) a global reasoning attention module integrated into the encoder's output to transfer label prior knowledge to unlabeled data; and (3) a correlation mutual learning scheme, enforcing mutual consistency between one decoder's probability map and the soft pseudo labels generated by the other decoders. Extensive experiments demonstrate that our approach outperforms state-of-the-art (SOTA) methods, highlighting the potential of our framework for tackling the complex task of 3D retinal lesion segmentation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过全局推理注意的相关相互学习进行半监督三维视网膜液分割。
在光学相干断层扫描(OCT)中对液体病变进行准确的三维分割,对于早期诊断糖尿病性黄斑水肿(DME)至关重要。然而,高维空间复杂性和有限的注释数据给有效的三维病变分割带来了巨大挑战。为了解决这些问题,我们提出了一种新颖的半监督策略,利用相关相互学习框架从三维 OCT 图像中分割三维 DME 病变。我们的方法集成了三项关键创新:(1)共享编码器与三个并行、略有不同的解码器,表现出认知偏差,并计算解码器之间的统计差异,以表示未标记挑战区域的不确定性。(2) 集成到编码器输出中的全局推理注意模块,将标签先验知识转移到无标签数据中;以及 (3) 相关相互学习方案,强制一个解码器的概率图与其他解码器生成的软伪标签之间保持相互一致。广泛的实验证明,我们的方法优于最先进的(SOTA)方法,凸显了我们的框架在处理复杂的三维视网膜病变分割任务方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Frequency shifting of light via multiple ultrasound waves in scattering media. Visually relevant on-bench through-focus analysis of intraocular lenses. In vivo dual-plane 3-photon microscopy: spanning the depth of the mouse neocortex. Inverted meniscus IOLs reduce image shifts in the periphery compared to biconvex IOLs. Near-infrared diffuse optical characterization of human thyroid using ultrasound-guided hybrid time-domain and diffuse correlation spectroscopies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1