{"title":"Time-resolved transcriptomic of single V. vinifera fruits: membrane transports as switches of the double sigmoidal growth.","authors":"Stefania Savoi, Mengyao Shi, Gautier Sarah, Audrey Weber, Laurent Torregrosa, Charles Romieu","doi":"10.1093/jxb/erae502","DOIUrl":null,"url":null,"abstract":"<p><p>By revealing that the grape berry loses one H+ per accumulated sucrose at the inception of ripening, adopting a single fruit paradigm elucidates the fundamentals of the malate-sugar nexus, previously obscured by asynchrony in population-based models of ripening. More broadly, the development of the individual fruit was revisited from scratch to capture the simultaneous changes in gene expression and metabolic fluxes in a kinetically relevant way from flowering to overripening. Dynamics in water, tartrate, malate, hexoses, and K+ fluxes obtained by combining individual single fruit growth and concentration data allowed to define eleven sub-phases in fruit development, which distributed on a rigorous curve in RNAseq PCA. WGCNA achieved unprecedented time resolutions in exploring transcript level-metabolic rate associations. A comprehensive set of membrane transporters was found specifically expressed during the first growth phase related to vacuolar over-acidification. Unlike in slightly more acidic citrus, H+ V-PPase transcripts were predominantly expressed, followed by V-ATPase, clarifying the thermodynamic limit beyond which their replacement by the tonoplast P3A/P3B ATPase (PH5/PH1) complex turns compulsory. Puzzlingly, bona fide aluminum-activated malate transporter (ALMT) kept a low profile at this stage, possibly replaced by a predominating uncharacterized anion channel. At the onset of ripening, the switch role of hexose transporter HT6 in sugar accumulation is confirmed, electroneutralized by malate vacuolar leakage and H+ pumps activation.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
By revealing that the grape berry loses one H+ per accumulated sucrose at the inception of ripening, adopting a single fruit paradigm elucidates the fundamentals of the malate-sugar nexus, previously obscured by asynchrony in population-based models of ripening. More broadly, the development of the individual fruit was revisited from scratch to capture the simultaneous changes in gene expression and metabolic fluxes in a kinetically relevant way from flowering to overripening. Dynamics in water, tartrate, malate, hexoses, and K+ fluxes obtained by combining individual single fruit growth and concentration data allowed to define eleven sub-phases in fruit development, which distributed on a rigorous curve in RNAseq PCA. WGCNA achieved unprecedented time resolutions in exploring transcript level-metabolic rate associations. A comprehensive set of membrane transporters was found specifically expressed during the first growth phase related to vacuolar over-acidification. Unlike in slightly more acidic citrus, H+ V-PPase transcripts were predominantly expressed, followed by V-ATPase, clarifying the thermodynamic limit beyond which their replacement by the tonoplast P3A/P3B ATPase (PH5/PH1) complex turns compulsory. Puzzlingly, bona fide aluminum-activated malate transporter (ALMT) kept a low profile at this stage, possibly replaced by a predominating uncharacterized anion channel. At the onset of ripening, the switch role of hexose transporter HT6 in sugar accumulation is confirmed, electroneutralized by malate vacuolar leakage and H+ pumps activation.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.