Leveraging DNA methylation to create Epigenetic Biomarker Proxies that inform clinical care: A new framework for Precision Medicine.

Natàlia Carreras-Gallo, Qingwen Chen, Laura Balagué-Dobón, Andrea Aparicio, Ilinca M Giosan, Rita Dargham, Daniel Phelps, Tao Guo, Kevin M Mendez, Yulu Chen, Athena Carangan, Srikar Vempaty, Sayf Hassouneh, Michael McGeachie, Tavis Mendez, Florence Comite, Karsten Suhre, Ryan Smith, Varun B Dwaraka, Jessica A Lasky-Su
{"title":"Leveraging DNA methylation to create Epigenetic Biomarker Proxies that inform clinical care: A new framework for Precision Medicine.","authors":"Natàlia Carreras-Gallo, Qingwen Chen, Laura Balagué-Dobón, Andrea Aparicio, Ilinca M Giosan, Rita Dargham, Daniel Phelps, Tao Guo, Kevin M Mendez, Yulu Chen, Athena Carangan, Srikar Vempaty, Sayf Hassouneh, Michael McGeachie, Tavis Mendez, Florence Comite, Karsten Suhre, Ryan Smith, Varun B Dwaraka, Jessica A Lasky-Su","doi":"10.1101/2024.12.06.24318612","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of accurate, cost-effective, and clinically relevant biomarkers remains a major barrier to incorporating omic data into clinical practice. Previous studies have shown that DNA methylation algorithms have utility as surrogate measures for selected proteins and metabolites. We expand upon this work by creating DNAm surrogates, termed epigenetic biomarker proxies (EBPs), across clinical laboratories, the metabolome, and the proteome. After screening >2,500 biomarkers, we trained and tested 1,694 EBP models and assessed their incident relationship with 12 chronic diseases and mortality, followed up to 15 years. We observe broad clinical relevance: 1) there are 1,292 and 4,863 FDR significant incident and prevalent associations, respectively; 2) most of these associations are replicated when looking at the lab-based counterpart, and > 62% of the shared associations have higher odds and hazard ratios to disease outcomes than their respective observed measurements; 3) EBPs of current clinical biochemistries detect deviations from normal with high sensitivity and specificity. Longitudinal EBPs also demonstrate significant changes corresponding to the changes observed in lab-based counterparts. Using two cohorts and > 30,000 individuals, we found that EBPs validate across healthy and sick populations. While further study is needed, these findings highlight the potential of implementing EBPs in a simple, low-cost, high-yield framework that benefits clinical medicine.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.06.24318612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lack of accurate, cost-effective, and clinically relevant biomarkers remains a major barrier to incorporating omic data into clinical practice. Previous studies have shown that DNA methylation algorithms have utility as surrogate measures for selected proteins and metabolites. We expand upon this work by creating DNAm surrogates, termed epigenetic biomarker proxies (EBPs), across clinical laboratories, the metabolome, and the proteome. After screening >2,500 biomarkers, we trained and tested 1,694 EBP models and assessed their incident relationship with 12 chronic diseases and mortality, followed up to 15 years. We observe broad clinical relevance: 1) there are 1,292 and 4,863 FDR significant incident and prevalent associations, respectively; 2) most of these associations are replicated when looking at the lab-based counterpart, and > 62% of the shared associations have higher odds and hazard ratios to disease outcomes than their respective observed measurements; 3) EBPs of current clinical biochemistries detect deviations from normal with high sensitivity and specificity. Longitudinal EBPs also demonstrate significant changes corresponding to the changes observed in lab-based counterparts. Using two cohorts and > 30,000 individuals, we found that EBPs validate across healthy and sick populations. While further study is needed, these findings highlight the potential of implementing EBPs in a simple, low-cost, high-yield framework that benefits clinical medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺乏准确、具有成本效益和临床相关性的生物标志物仍然是将 omic 数据纳入临床实践的主要障碍。之前的研究表明,DNA 甲基化算法可作为选定蛋白质和代谢物的替代指标。在此基础上,我们在临床实验室、代谢组和蛋白质组中创建了 DNAm 代用指标,称为表观遗传生物标志物代用指标(EBPs)。在筛选了超过 2500 个生物标志物后,我们训练并测试了 1694 个 EBP 模型,并评估了它们与 12 种慢性疾病和死亡率之间的关系,随访时间长达 15 年。我们观察到了广泛的临床相关性:1)分别有 1,292 和 4,863 个 FDR 显著的事件关联和流行关联;2)这些关联中的大多数在观察基于实验室的对应物时都得到了复制,超过 62% 的共享关联与疾病结果的几率和危险比高于各自的观察测量值;3)当前临床生化指标的 EBPs 能以高灵敏度和特异性检测到偏离正常值的情况。纵向 EBPs 也显示出与在实验室中观察到的相应变化相对应的显著变化。通过使用两个队列和超过 30,000 人的数据,我们发现 EBPs 在健康和患病人群中均有效。虽然还需要进一步研究,但这些发现凸显了在一个简单、低成本、高产出的框架内实施 EBPs 的潜力,有利于临床医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peer Education Intervention Reduced Sexually Transmitted Infections Among Male Tajik Labor Migrants Who Inject Drugs: Results of a Cluster-randomized Controlled Trial. LD-informed deep learning for Alzheimer's gene loci detection using WGS data. Uncovering causal gene-tissue pairs and variants: A multivariable TWAS method controlling for infinitesimal effects. Unified Clinical Vocabulary Embeddings for Advancing Precision Medicine. Deep phenotyping obesity using EHR data: Promise, Challenges, and Future Directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1