Leveraging functional annotations to map rare variants associated with Alzheimer's disease with gruyere.

Anjali Das, Chirag Lakhani, Chloé Terwagne, Jui-Shan T Lin, Tatsuhiko Naito, Towfique Raj, David A Knowles
{"title":"Leveraging functional annotations to map rare variants associated with Alzheimer's disease with gruyere.","authors":"Anjali Das, Chirag Lakhani, Chloé Terwagne, Jui-Shan T Lin, Tatsuhiko Naito, Towfique Raj, David A Knowles","doi":"10.1101/2024.12.06.24318577","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing availability of whole-genome sequencing (WGS) has begun to elucidate the contribution of rare variants (RVs), both coding and non-coding, to complex disease. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most are restricted to per-gene models and do not fully leverage the availability of variant-level functional annotations. We propose Genome-wide Rare Variant EnRichment Evaluation ( gruyere ), a Bayesian probabilistic model that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease (AD) Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify AD-associated genes and annotations. Growing evidence suggests that disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not had sufficient power to examine rare non-coding effects that incorporate such cell-type specific information. To address this gap, we 1) use predicted enhancer and promoter regions in microglia and other potentially relevant cell types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding RV test sets and 2) include cell-type specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 15 significant genetic associations not detected by other RV methods and finds deep learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a novel and robust framework incorporating functional annotations, coding RVs, and cell-type associated non-coding RVs, to perform genome-wide association tests, uncovering AD-relevant genes and annotations.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.06.24318577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing availability of whole-genome sequencing (WGS) has begun to elucidate the contribution of rare variants (RVs), both coding and non-coding, to complex disease. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most are restricted to per-gene models and do not fully leverage the availability of variant-level functional annotations. We propose Genome-wide Rare Variant EnRichment Evaluation ( gruyere ), a Bayesian probabilistic model that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease (AD) Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify AD-associated genes and annotations. Growing evidence suggests that disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not had sufficient power to examine rare non-coding effects that incorporate such cell-type specific information. To address this gap, we 1) use predicted enhancer and promoter regions in microglia and other potentially relevant cell types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding RV test sets and 2) include cell-type specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 15 significant genetic associations not detected by other RV methods and finds deep learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a novel and robust framework incorporating functional annotations, coding RVs, and cell-type associated non-coding RVs, to perform genome-wide association tests, uncovering AD-relevant genes and annotations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用功能注释绘制与阿兹海默症相关的罕见变异基因图谱。
越来越多的全基因组测序(WGS)已经开始阐明罕见变异(RVs),包括编码和非编码,对复杂疾病的贡献。多种RV关联测试可用于研究基因型和表型之间的关系,但大多数仅限于每基因模型,并不能充分利用变异水平功能注释的可用性。我们提出了全基因组罕见变体富集评估(gruyere),这是一种贝叶斯概率模型,通过学习功能注释的全局特征特定权重来补充现有方法,以提高变体优先级。我们将gruyere应用于来自阿尔茨海默病(AD)测序项目的WGS数据,包括7,966例病例和13,412例对照,以识别AD相关基因和注释。越来越多的证据表明,小胶质细胞调节的破坏是AD风险的关键因素,然而现有的方法还没有足够的能力来检查包含这种细胞类型特异性信息的罕见非编码效应。为了解决这一差距,我们1)在小胶质细胞和其他潜在相关细胞类型(少突胶质细胞、星形胶质细胞和神经元)中使用预测的增强子和启动子区域来定义每个基因的非编码RV测试集,2)将细胞类型特异性变异效应预测(vep)作为功能注释。gruyere确定了其他RV方法未检测到的15个重要遗传关联,并发现基于深度学习的剪接、转录因子结合和染色质状态的vep对功能性非编码RV具有高度预测性。我们的研究建立了一个新的和强大的框架,包括功能注释、编码RVs和细胞类型相关的非编码RVs,以进行全基因组关联测试,揭示ad相关基因和注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-Driven Online Multimodal Automated Phenotyping System. Leveraging functional annotations to map rare variants associated with Alzheimer's disease with gruyere. A Streamlined Point-of-Care CRISPR Test for Tuberculosis Detection Directly from Sputum. Uncovering Phenotypic Expansion in AXIN2-Related Disorders through Precision Animal Modeling. Status and Opportunities of Machine Learning Applications in Obstructive Sleep Apnea: A Narrative Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1