Coralie E. Salesse‐Smith, Yu Wang, Stephen P. Long
{"title":"Increasing Rubisco as a simple means to enhance photosynthesis and productivity now without lowering nitrogen use efficiency","authors":"Coralie E. Salesse‐Smith, Yu Wang, Stephen P. Long","doi":"10.1111/nph.20298","DOIUrl":null,"url":null,"abstract":"SummaryGlobal demand for food may rise by 60% mid‐century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen. Developing more efficient forms of Rubisco, or engineering CO<jats:sub>2</jats:sub> concentrating mechanisms into C<jats:sub>3</jats:sub> crops to competitively repress oxygenation, are major endeavors, which could hugely increase photosynthetic productivity (≥ 60%). New technologies are bringing this closer, but improvements remain in the discovery phase and have not been reduced to practice. A simpler shorter‐term strategy that could fill this time gap, but with smaller productivity increases (<jats:italic>c</jats:italic>. 10%) is to increase leaf Rubisco content. This has been demonstrated in initial field trials, improving the productivity of C<jats:sub>3</jats:sub> and C<jats:sub>4</jats:sub> crops. Combining three‐dimensional leaf canopies with metabolic models infers that a 20% increase in Rubisco increases canopy photosynthesis by 14% in sugarcane (C<jats:sub>4</jats:sub>) and 9% in soybean (C<jats:sub>3</jats:sub>). This is consistent with observed productivity increases in rice, maize, sorghum and sugarcane. Upregulation of Rubisco is calculated not to require more nitrogen per unit yield and although achieved transgenically to date, might be achieved using gene editing to produce transgene‐free gain of function mutations or using breeding.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"34 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20298","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryGlobal demand for food may rise by 60% mid‐century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen. Developing more efficient forms of Rubisco, or engineering CO2 concentrating mechanisms into C3 crops to competitively repress oxygenation, are major endeavors, which could hugely increase photosynthetic productivity (≥ 60%). New technologies are bringing this closer, but improvements remain in the discovery phase and have not been reduced to practice. A simpler shorter‐term strategy that could fill this time gap, but with smaller productivity increases (c. 10%) is to increase leaf Rubisco content. This has been demonstrated in initial field trials, improving the productivity of C3 and C4 crops. Combining three‐dimensional leaf canopies with metabolic models infers that a 20% increase in Rubisco increases canopy photosynthesis by 14% in sugarcane (C4) and 9% in soybean (C3). This is consistent with observed productivity increases in rice, maize, sorghum and sugarcane. Upregulation of Rubisco is calculated not to require more nitrogen per unit yield and although achieved transgenically to date, might be achieved using gene editing to produce transgene‐free gain of function mutations or using breeding.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.