diffSph: a Python tool to compute diffuse signals from dwarf spheroidal galaxies

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2024-12-17 DOI:10.1088/1475-7516/2024/12/046
Martin Vollmann, Finn Welzmüller and Lovorka Gajović
{"title":"diffSph: a Python tool to compute diffuse signals from dwarf spheroidal galaxies","authors":"Martin Vollmann, Finn Welzmüller and Lovorka Gajović","doi":"10.1088/1475-7516/2024/12/046","DOIUrl":null,"url":null,"abstract":"So far no diffuse emissions in dwarf spheroidal satellites of the Milky Way have ever been observed. Given that dwarf galaxies are predominantly composed of Dark Matter, the discovery of these signals could offer valuable insights into understanding the nature of Dark Matter. We present “diffSph”, a Python tool which in its present version provides fast predictions of such diffuse signals in radio frequencies. It also features a very comprehensive module for the computation of “J” and “D” factors that are relevant for indirect Dark Matter detection using gamma rays. Routines are coupled to parton-shower algorithms and Dark Matter halo mass functions from state-of-the-art kinematic fits. This code is also useful for testing generic hypotheses (not necessarily associated with any Dark Matter candidate) about the cosmic-ray electron/positron sources in the dwarf galaxies. The diffSph tool has already been employed in searches for diffuse signals from dwarf spheroidal galaxies using the LOw Frequency ARray (LOFAR).","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"76 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/046","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

So far no diffuse emissions in dwarf spheroidal satellites of the Milky Way have ever been observed. Given that dwarf galaxies are predominantly composed of Dark Matter, the discovery of these signals could offer valuable insights into understanding the nature of Dark Matter. We present “diffSph”, a Python tool which in its present version provides fast predictions of such diffuse signals in radio frequencies. It also features a very comprehensive module for the computation of “J” and “D” factors that are relevant for indirect Dark Matter detection using gamma rays. Routines are coupled to parton-shower algorithms and Dark Matter halo mass functions from state-of-the-art kinematic fits. This code is also useful for testing generic hypotheses (not necessarily associated with any Dark Matter candidate) about the cosmic-ray electron/positron sources in the dwarf galaxies. The diffSph tool has already been employed in searches for diffuse signals from dwarf spheroidal galaxies using the LOw Frequency ARray (LOFAR).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
diffSph:计算矮球状星系漫反射信号的 Python 工具
迄今为止,还没有观测到银河系矮球状卫星的漫射信号。鉴于矮星系主要由暗物质组成,发现这些信号可以为了解暗物质的性质提供宝贵的见解。我们介绍的 "diffSph "是一个 Python 工具,目前的版本可以快速预测这种射电频率的漫反射信号。它还有一个非常全面的模块,用于计算与利用伽马射线间接探测暗物质有关的 "J "和 "D "因子。例程与最先进的运动拟合中的粒子辐射算法和暗物质光环质量函数相耦合。该代码还有助于测试有关矮星系中宇宙射线电子/正电子源的一般假设(不一定与任何暗物质候选者相关)。diffSph工具已经被用于利用低频ARray(LOFAR)搜索矮球状星系的漫反射信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
CMB implications of multi-field axio-dilaton cosmology Improved treatment of bosonic dark matter dynamics in neutron stars: consequences and constraints Cosmological constraints from calibrated Ep - E iso gamma-ray burst correlation by using DESI 2024 data release Towards an accurate treatment of the reduced speed of light approximation in parameterized radiative transfer simulations of reionization Magnetogenesis from axion-SU(2) inflation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1