Qian Ding, Yi Yuan, Xuan Li, Yun Li, Pan Pan Li, Yi Qin, Liang Jun Xu, Min Cao, Xiao Hui Xiong, Yi Chen Lu
{"title":"Unraveling the Metabolic Enigma: A High-Resolution LC–MS Approach to Decipher Two Triazine Herbicides Tolerance in Radish and Rice","authors":"Qian Ding, Yi Yuan, Xuan Li, Yun Li, Pan Pan Li, Yi Qin, Liang Jun Xu, Min Cao, Xiao Hui Xiong, Yi Chen Lu","doi":"10.1021/acs.jafc.4c06173","DOIUrl":null,"url":null,"abstract":"Our study investigated the effects of terbuthylazine (TBA) and metribuzin (MT) on rice and radish at field application concentrations. Both herbicides induced oxidative stress and severely inhibited growth in the two crops. However, the radish cultivar T-33 exhibited significantly lower stress levels compared to the sensitive cultivar S-24, suggesting its higher tolerance to TBA and MT. To explore the potential role of metabolism in this tolerance, we developed a novel HPLC-Q-TOF-MS method, which demonstrated excellent performance and identified 18 TBA and 20 MT metabolites, most of which were discovered in plants for the first time. The results revealed significantly higher accumulation of both herbicides in rice compared to radish, especially in the aerial parts, with increasing translocation in rice and the opposite trend in radish. Quantitative analysis revealed significantly higher levels of glycosylated MT products and amino acid conjugates in T-33 compared to S-24, suggesting their crucial role in detoxification and tolerance mechanisms. Our findings have significant implications for food safety, crop protection, and sustainable agricultural practices in regions employing vegetable–crop rotation systems.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"41 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c06173","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Our study investigated the effects of terbuthylazine (TBA) and metribuzin (MT) on rice and radish at field application concentrations. Both herbicides induced oxidative stress and severely inhibited growth in the two crops. However, the radish cultivar T-33 exhibited significantly lower stress levels compared to the sensitive cultivar S-24, suggesting its higher tolerance to TBA and MT. To explore the potential role of metabolism in this tolerance, we developed a novel HPLC-Q-TOF-MS method, which demonstrated excellent performance and identified 18 TBA and 20 MT metabolites, most of which were discovered in plants for the first time. The results revealed significantly higher accumulation of both herbicides in rice compared to radish, especially in the aerial parts, with increasing translocation in rice and the opposite trend in radish. Quantitative analysis revealed significantly higher levels of glycosylated MT products and amino acid conjugates in T-33 compared to S-24, suggesting their crucial role in detoxification and tolerance mechanisms. Our findings have significant implications for food safety, crop protection, and sustainable agricultural practices in regions employing vegetable–crop rotation systems.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.