A Mitochondrion-Targeting Piezoelectric Nanosystem for the Treatment of Erectile Dysfunction via Autophagy Regulation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-17 DOI:10.1002/adma.202413287
Shuting Wang, Zhenqing Wang, Zhenjie Zang, Xiaojie Liang, Bin Jia, Tan Ye, Yang Lan, Xuetao Shi
{"title":"A Mitochondrion-Targeting Piezoelectric Nanosystem for the Treatment of Erectile Dysfunction via Autophagy Regulation","authors":"Shuting Wang, Zhenqing Wang, Zhenjie Zang, Xiaojie Liang, Bin Jia, Tan Ye, Yang Lan, Xuetao Shi","doi":"10.1002/adma.202413287","DOIUrl":null,"url":null,"abstract":"Mitochondrial damage caused by external stimuli, such as high glucose levels and inflammation, results in excessive reactive oxygen species (ROS) production. Existing antioxidants can only scavenge ROS and cannot address the root cause of ROS production, namely, abnormal mitochondria. To overcome this limitation, the study develops a piezoelectric synergistic drug-loaded nanosystem (BaTCG nanosystem) that targets mitochondria. The BaTCG nanosystem is delivered to mitochondria via triphenylphosphine modification, and generates current under the stimulation of ultrasound, thereby promoting mitochondrial autophagy and restoring mitochondrial homeostasis. In a model of diabetes-related erectile dysfunction (ED), the BaTCG nanosystem, through the current induced by the piezoelectric effect, not only promoted mitophagy, thereby reducing ROS production, but also released long-acting glucagon-like peptide-1 receptor agonists (GLP-1RAs) to effectively reduce blood glucose levels and mitochondrial damage. Each component of this nanosystem functions individually as well as synergistically, thus facilitating corpus cavernosum repair and restoring erectile function. In conclusion, the findings offer a novel therapeutic strategy for diabetes-related ED and a target for the treatment of diabetes-related conditions with functionalized nanoparticles to regulate mitophagy.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"88 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413287","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial damage caused by external stimuli, such as high glucose levels and inflammation, results in excessive reactive oxygen species (ROS) production. Existing antioxidants can only scavenge ROS and cannot address the root cause of ROS production, namely, abnormal mitochondria. To overcome this limitation, the study develops a piezoelectric synergistic drug-loaded nanosystem (BaTCG nanosystem) that targets mitochondria. The BaTCG nanosystem is delivered to mitochondria via triphenylphosphine modification, and generates current under the stimulation of ultrasound, thereby promoting mitochondrial autophagy and restoring mitochondrial homeostasis. In a model of diabetes-related erectile dysfunction (ED), the BaTCG nanosystem, through the current induced by the piezoelectric effect, not only promoted mitophagy, thereby reducing ROS production, but also released long-acting glucagon-like peptide-1 receptor agonists (GLP-1RAs) to effectively reduce blood glucose levels and mitochondrial damage. Each component of this nanosystem functions individually as well as synergistically, thus facilitating corpus cavernosum repair and restoring erectile function. In conclusion, the findings offer a novel therapeutic strategy for diabetes-related ED and a target for the treatment of diabetes-related conditions with functionalized nanoparticles to regulate mitophagy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自噬调节治疗勃起功能障碍的线粒体靶向压电纳米系统
高血糖和炎症等外部刺激造成的线粒体损伤会导致活性氧(ROS)产生过多。现有的抗氧化剂只能清除 ROS,无法解决 ROS 产生的根本原因,即线粒体异常。为了克服这一局限性,本研究开发了一种针对线粒体的压电协同载药纳米系统(BaTCG 纳米系统)。BaTCG 纳米系统通过三苯基膦修饰输送到线粒体,在超声波刺激下产生电流,从而促进线粒体自噬,恢复线粒体平衡。在糖尿病相关勃起功能障碍(ED)模型中,BaTCG 纳米系统通过压电效应诱导的电流,不仅促进了线粒体自噬,从而减少了 ROS 的产生,还释放了长效胰高血糖素样肽-1 受体激动剂(GLP-1RAs),有效降低了血糖水平和线粒体损伤。该纳米系统的每个组成部分既能单独发挥作用,又能协同增效,从而促进海绵体修复并恢复勃起功能。总之,研究结果为糖尿病相关性勃起功能障碍提供了一种新的治疗策略,也为利用功能化纳米粒子调节线粒体吞噬作用治疗糖尿病相关疾病提供了一个靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
A Mitochondrion-Targeting Piezoelectric Nanosystem for the Treatment of Erectile Dysfunction via Autophagy Regulation Recent Progress and Challenges of Li-Rich Mn-Based Cathode Materials for Solid-State Lithium-Ion Batteries Matrix Viscoelasticity Controls Differentiation of Human Blood Vessel Organoids into Arterioles and Promotes Neovascularization in Myocardial Infarction Designing Silk Biomaterials toward Better Future Healthcare: The Development and Application of Silk-Based Implantable Electronic Devices in Clinical Diagnosis and Therapy Programmable Morphology-Adaptive Peptide Nanoassembly for Enhanced Catalytic Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1