Microelectrodes for Battery Materials

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-12-17 DOI:10.1021/acsnano.4c12573
Yiyang Li, Min-Ho Kim, Zhangdi Xie, Jinhong Min, Yuzhang Li
{"title":"Microelectrodes for Battery Materials","authors":"Yiyang Li, Min-Ho Kim, Zhangdi Xie, Jinhong Min, Yuzhang Li","doi":"10.1021/acsnano.4c12573","DOIUrl":null,"url":null,"abstract":"The ability to measure current and voltage is core to both fundamental study and engineering of electrochemical systems, including batteries for energy storage. Electrochemical measurements have traditionally been conducted on macroscopic electrodes on the order of 1 cm or larger. In this Perspective, we review recent developments in using microscopic electrodes (<100 μm) for the study of battery materials. Microelectrodes allow us to explore spatiotemporal regimes that are not accessible with macroscopic electrodes. Temporally, microelectrodes can generate ultrahigh current densities, enabling the distinction between solid electrolyte interphase (SEI) kinetics and metal deposition kinetics. Spatially, they confine electrochemistry to single particles, allowing us to study their intrinsic properties. We outline future opportunities for the use of microelectrodes for future studies of battery systems. We propose their use for analyzing the electrochemistry of other reactive metals and exploring the potential of combining them with in situ imaging techniques.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"93 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12573","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to measure current and voltage is core to both fundamental study and engineering of electrochemical systems, including batteries for energy storage. Electrochemical measurements have traditionally been conducted on macroscopic electrodes on the order of 1 cm or larger. In this Perspective, we review recent developments in using microscopic electrodes (<100 μm) for the study of battery materials. Microelectrodes allow us to explore spatiotemporal regimes that are not accessible with macroscopic electrodes. Temporally, microelectrodes can generate ultrahigh current densities, enabling the distinction between solid electrolyte interphase (SEI) kinetics and metal deposition kinetics. Spatially, they confine electrochemistry to single particles, allowing us to study their intrinsic properties. We outline future opportunities for the use of microelectrodes for future studies of battery systems. We propose their use for analyzing the electrochemistry of other reactive metals and exploring the potential of combining them with in situ imaging techniques.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Improved Friction Reduction and Wear Resistance of Steel Using a Subnanometer Nanowires-Poly-α-Olefin Gel Lubricant. Anisotropic Thermal Transport in Tunable Self-Assembled Nanocrystal Supercrystals. Nanotechnology Papers with an Agricultural Focus Are Too Frequently Published with a Superficial Understanding of Basic Plant and Soil Science Electrochemically Tailored Host Design with Gradient Seeds for Dendrite-Free Li Metal Batteries Introducing Semiconducting-to-Metallic Transitions into Wafer-Scale 2D PdSe2 Layers by Low-Temperature Anion Exchange and Thickness Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1