Introducing Semiconducting-to-Metallic Transitions into Wafer-Scale 2D PdSe2 Layers by Low-Temperature Anion Exchange and Thickness Modulation

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-12-17 DOI:10.1021/acsnano.4c11627
Alireza Ghanipour, Sang Sub Han, Changhyeon Yoo, Chung Won Lee, Yeonwoong Jung
{"title":"Introducing Semiconducting-to-Metallic Transitions into Wafer-Scale 2D PdSe2 Layers by Low-Temperature Anion Exchange and Thickness Modulation","authors":"Alireza Ghanipour, Sang Sub Han, Changhyeon Yoo, Chung Won Lee, Yeonwoong Jung","doi":"10.1021/acsnano.4c11627","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) palladium diselenide (PdSe<sub>2</sub>) layers are projected to exhibit a number of intriguing electrical properties such as semiconducting-to-metallic transitions. Precisely modulating their morphology and chemistry is essential for realizing such opportunities, which is particularly demanded on a large dimension under flexible processing conditions toward broadening their practical device applicability. Herein, we explore a wafer-scale growth of 2D PdSe<sub>2</sub> layers and introduce semiconducting-to-metallic transitions into them at as low as 330 °C, a temperature compatible with a range of polymeric substrates as well as the back-end-of-line (BEOL) processes. Two independent physical and chemical approaches of thickness modulation and anion exchange are demonstrated to induce the low-temperature-driven electrical transitions. Wafer-scale 2D PdSe<sub>2</sub> layers grown from a scalable selenization of thin (∼2 nm) Pd exhibit <i>p</i>-type semiconducting characteristics, which completely vanish with increasing thickness. Furthermore, a postgrowth reaction involving an exchange of selenium (Se)-to-tellurium (Te) ions chemically introduces the semiconducting-to-metallic transitions through the conversion of PdSe<sub>2</sub>-to-palladium ditelluride (PdTe<sub>2</sub>). A significant reduction of the bandgap energy from 0.7 to 0 V is observed to be associated with the transitions, while the converted 2D layers remain to be highly metallic irrespective of thickness variations. These controlled transition characteristics are employed to fabricate “all-2D” flexible devices employing semiconducting 2D layer channels and metallic 2D layer electrodes on a wafer-scale.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"23 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11627","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) palladium diselenide (PdSe2) layers are projected to exhibit a number of intriguing electrical properties such as semiconducting-to-metallic transitions. Precisely modulating their morphology and chemistry is essential for realizing such opportunities, which is particularly demanded on a large dimension under flexible processing conditions toward broadening their practical device applicability. Herein, we explore a wafer-scale growth of 2D PdSe2 layers and introduce semiconducting-to-metallic transitions into them at as low as 330 °C, a temperature compatible with a range of polymeric substrates as well as the back-end-of-line (BEOL) processes. Two independent physical and chemical approaches of thickness modulation and anion exchange are demonstrated to induce the low-temperature-driven electrical transitions. Wafer-scale 2D PdSe2 layers grown from a scalable selenization of thin (∼2 nm) Pd exhibit p-type semiconducting characteristics, which completely vanish with increasing thickness. Furthermore, a postgrowth reaction involving an exchange of selenium (Se)-to-tellurium (Te) ions chemically introduces the semiconducting-to-metallic transitions through the conversion of PdSe2-to-palladium ditelluride (PdTe2). A significant reduction of the bandgap energy from 0.7 to 0 V is observed to be associated with the transitions, while the converted 2D layers remain to be highly metallic irrespective of thickness variations. These controlled transition characteristics are employed to fabricate “all-2D” flexible devices employing semiconducting 2D layer channels and metallic 2D layer electrodes on a wafer-scale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Nanotechnology Papers with an Agricultural Focus Are Too Frequently Published with a Superficial Understanding of Basic Plant and Soil Science Electrochemically Tailored Host Design with Gradient Seeds for Dendrite-Free Li Metal Batteries Introducing Semiconducting-to-Metallic Transitions into Wafer-Scale 2D PdSe2 Layers by Low-Temperature Anion Exchange and Thickness Modulation Achieving Robust α-Alumina Nanofibers by Ligand Confinement Coupled with Local Disorder Tuning Microelectrodes for Battery Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1