Diastereoselective Cascade Double Michael Addition to Access Bridged Coumarins, Oxindoles and Spirooxindoles: A Sustainable Strategy for Synthesis of Anticancer Molecules.

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL ChemMedChem Pub Date : 2024-12-16 DOI:10.1002/cmdc.202400946
Kiranmai Nayani, Shravani Battula, Haripriya Bhumannagari, S S S S Sudha Ambadipudi, Sai Balaji Andugulapati
{"title":"Diastereoselective Cascade Double Michael Addition to Access Bridged Coumarins, Oxindoles and Spirooxindoles: A Sustainable Strategy for Synthesis of Anticancer Molecules.","authors":"Kiranmai Nayani, Shravani Battula, Haripriya Bhumannagari, S S S S Sudha Ambadipudi, Sai Balaji Andugulapati","doi":"10.1002/cmdc.202400946","DOIUrl":null,"url":null,"abstract":"<p><p>An efficient and concise synthesis of highly functionalized bridged coumarins has been developed through a diastereoselective double Michael addition reaction of p-quinols with various 4-hydroxy coumarins under catalyst-free conditions in H2O-DMSO (8:2). The method has been applied to oxindoles for the synthesis of a variety of bridged-oxindoles and bridged-spiroxindoles in presence of a DABCO base using H2O-EtOH (8:2) as solvent medium. The strategy is simple, highly atom economical as there is no by-product and environmentally benign (E-factor = 0.1-0.9). The synthesized compounds were screened against triple-negative breast cancers and found that bridged coumarin (3a) and oxindole (5d) compounds exhibit potent anti-cancer activity at 6.6 and 8.8 µM (IC50) concentrations respectively. Further analysis revealed that 3a and 5d caused elevated early and total apoptosis by arresting the MDA-MB-468 cells in G2/M phase of the cell cycle. Overall, our results demonstrate that bridged coumarin (3a) and oxindole (5d) compounds-based approach attenuates the cancer progression and may pave a path for the translational outcome.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400946"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400946","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient and concise synthesis of highly functionalized bridged coumarins has been developed through a diastereoselective double Michael addition reaction of p-quinols with various 4-hydroxy coumarins under catalyst-free conditions in H2O-DMSO (8:2). The method has been applied to oxindoles for the synthesis of a variety of bridged-oxindoles and bridged-spiroxindoles in presence of a DABCO base using H2O-EtOH (8:2) as solvent medium. The strategy is simple, highly atom economical as there is no by-product and environmentally benign (E-factor = 0.1-0.9). The synthesized compounds were screened against triple-negative breast cancers and found that bridged coumarin (3a) and oxindole (5d) compounds exhibit potent anti-cancer activity at 6.6 and 8.8 µM (IC50) concentrations respectively. Further analysis revealed that 3a and 5d caused elevated early and total apoptosis by arresting the MDA-MB-468 cells in G2/M phase of the cell cycle. Overall, our results demonstrate that bridged coumarin (3a) and oxindole (5d) compounds-based approach attenuates the cancer progression and may pave a path for the translational outcome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
期刊最新文献
Investigating the C2 modulation of the imidazo[1,2-a]pyrazine-based hit compound CTN1122: synthesis, in vitro antileishmanial activity, cytotoxicity and casein kinase 1 inhibition. Synthesis of 1,2,3-Triazole-Methyl-Menadione Derivatives: Evaluation of Electrochemical and Antiparasitic Properties against two Blood-Dwelling Parasites. Diastereoselective Cascade Double Michael Addition to Access Bridged Coumarins, Oxindoles and Spirooxindoles: A Sustainable Strategy for Synthesis of Anticancer Molecules. Insight into Stabilization of G-Quadruplex in c-MYC Region with Phenanthroimidazoisoindol-Acrylates and their Binding Behaviour towards Human Serum Albumin. Front Cover: Cholinesterase Inhibitory Activity and Molecular Docking Studies of Isocryptolepine-Triazole Adducts (ChemMedChem 24/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1