Within-leaf variation in embolism resistance is not a rule for compound-leaved angiosperms

IF 2.4 2区 生物学 Q2 PLANT SCIENCES American Journal of Botany Pub Date : 2024-12-16 DOI:10.1002/ajb2.16447
Ian M. Rimer, Scott A. M. McAdam
{"title":"Within-leaf variation in embolism resistance is not a rule for compound-leaved angiosperms","authors":"Ian M. Rimer,&nbsp;Scott A. M. McAdam","doi":"10.1002/ajb2.16447","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Hydraulic segmentation, caused by the difference in embolism resistance across plant organs, provides a sacrificial layer of cheaper plant organs, like leaves, to protect more costly organs, such as stems, during drought. Within-leaf hydraulic segmentation has been observed in two compound-leaved tree species, with leaflets being more vulnerable than the rachis or petiole. Many herbaceous species have compound leaves, and some species have leaflets that are associated with pulvini at the base of the lamina, which could provide an anatomical means of preventing embolism from spreading within a leaf because of the higher number of vessel endings in the pulvinus.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used the optical vulnerability method to investigate whether differences in embolism resistance were observed across the leaf tissues of six herbaceous species and one deciduous tree species with compound leaves. Our species selection included both palmately and pinnately-compound leaved species, one of each with a pulvinus at the base of the leaflets.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found considerable variation in embolism resistance across the species measured, but no evidence of variation in embolism resistance within the leaf. In two species with pulvini, we observed major embolism events crossing the pulvinus, spreading from the rachis or petiole into the lamina, and embolizing both tissues at the same water potential.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We conclude that within-leaf hydraulic segmentation, caused by variation in embolism resistance, is not a universal phenomenon to compound-leaved species and that the presence of a pulvinus does not provide a barrier to embolism spread in compound leaves.</p>\n </section>\n </div>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":"111 12","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajb2.16447","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ajb2.16447","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Premise

Hydraulic segmentation, caused by the difference in embolism resistance across plant organs, provides a sacrificial layer of cheaper plant organs, like leaves, to protect more costly organs, such as stems, during drought. Within-leaf hydraulic segmentation has been observed in two compound-leaved tree species, with leaflets being more vulnerable than the rachis or petiole. Many herbaceous species have compound leaves, and some species have leaflets that are associated with pulvini at the base of the lamina, which could provide an anatomical means of preventing embolism from spreading within a leaf because of the higher number of vessel endings in the pulvinus.

Methods

We used the optical vulnerability method to investigate whether differences in embolism resistance were observed across the leaf tissues of six herbaceous species and one deciduous tree species with compound leaves. Our species selection included both palmately and pinnately-compound leaved species, one of each with a pulvinus at the base of the leaflets.

Results

We found considerable variation in embolism resistance across the species measured, but no evidence of variation in embolism resistance within the leaf. In two species with pulvini, we observed major embolism events crossing the pulvinus, spreading from the rachis or petiole into the lamina, and embolizing both tissues at the same water potential.

Conclusions

We conclude that within-leaf hydraulic segmentation, caused by variation in embolism resistance, is not a universal phenomenon to compound-leaved species and that the presence of a pulvinus does not provide a barrier to embolism spread in compound leaves.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对于复叶被子植物来说,叶内抗栓性变异并不常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Botany
American Journal of Botany 生物-植物科学
CiteScore
4.90
自引率
6.70%
发文量
171
审稿时长
3 months
期刊介绍: The American Journal of Botany (AJB), the flagship journal of the Botanical Society of America (BSA), publishes peer-reviewed, innovative, significant research of interest to a wide audience of plant scientists in all areas of plant biology (structure, function, development, diversity, genetics, evolution, systematics), all levels of organization (molecular to ecosystem), and all plant groups and allied organisms (cyanobacteria, algae, fungi, and lichens). AJB requires authors to frame their research questions and discuss their results in terms of major questions of plant biology. In general, papers that are too narrowly focused, purely descriptive, natural history, broad surveys, or that contain only preliminary data will not be considered.
期刊最新文献
The memory of past water abundance shapes trees 7 years later. Issue Information Spatiotemporal variation in population dynamics of a narrow endemic, Ranunculus austro-oreganus. qPCR-based quantification reveals high plant host-specificity of endophytic colonization levels in leaves. Within-leaf variation in embolism resistance is not a rule for compound-leaved angiosperms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1