VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway.

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemistry international Pub Date : 2024-12-14 DOI:10.1016/j.neuint.2024.105918
Xia Jiang, Wendi Yang, Gang Liu, Hao Tang, Renzi Zhang, Lina Zhang, Changqing Li, Sheng Li
{"title":"VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway.","authors":"Xia Jiang, Wendi Yang, Gang Liu, Hao Tang, Renzi Zhang, Lina Zhang, Changqing Li, Sheng Li","doi":"10.1016/j.neuint.2024.105918","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is the second leading cause of death worldwide. Although conventional treatments such as thrombolysis and mechanical thrombectomy are effective, their narrow therapeutic window limits long-term neurological recovery. Previous studies have shown that vagus nerve stimulation (VNS) enhances neurological recovery after ischemia/reperfusion (I/R) injury, and neuromedin U (NMU) has neuroprotective effects. This study used a mouse model of cerebral I/R injury to investigate the potential mechanisms of NMU in VNS-mediated neurological improvement. The study consisted of two parts: first, assessing the dynamic expression of NMU and NMUR2, which peaked on day 14 post-I/R. NMUR2 was primarily localized in astrocytes, suggesting that the NMU-NMUR2 signaling pathway plays an important role in astrocyte regulation. Next, interventions with VNS, NMU, and R-PSOP + VNS were conducted to evaluate the role of this pathway in VNS-mediated recovery. The results showed that VNS significantly upregulated NMU and NMUR2 expression, which was blocked by the NMUR2 antagonist R-PSOP. VNS and NMU treatment increased the proportion of A2 astrocytes, reduced A1 astrocytes, and enhanced the expression of VEGF and BDNF, all of which were also blocked by R-PSOP. These findings indicate that the \"VNS-NMU-NMUR2-astrocyte A1/A2 polarization-VEGF/BDNF pathway\" plays a crucial role in promoting neurovascular remodeling, axonal and dendritic regeneration, and synaptic plasticity, thereby contributing to functional recovery.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105918"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuint.2024.105918","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke is the second leading cause of death worldwide. Although conventional treatments such as thrombolysis and mechanical thrombectomy are effective, their narrow therapeutic window limits long-term neurological recovery. Previous studies have shown that vagus nerve stimulation (VNS) enhances neurological recovery after ischemia/reperfusion (I/R) injury, and neuromedin U (NMU) has neuroprotective effects. This study used a mouse model of cerebral I/R injury to investigate the potential mechanisms of NMU in VNS-mediated neurological improvement. The study consisted of two parts: first, assessing the dynamic expression of NMU and NMUR2, which peaked on day 14 post-I/R. NMUR2 was primarily localized in astrocytes, suggesting that the NMU-NMUR2 signaling pathway plays an important role in astrocyte regulation. Next, interventions with VNS, NMU, and R-PSOP + VNS were conducted to evaluate the role of this pathway in VNS-mediated recovery. The results showed that VNS significantly upregulated NMU and NMUR2 expression, which was blocked by the NMUR2 antagonist R-PSOP. VNS and NMU treatment increased the proportion of A2 astrocytes, reduced A1 astrocytes, and enhanced the expression of VEGF and BDNF, all of which were also blocked by R-PSOP. These findings indicate that the "VNS-NMU-NMUR2-astrocyte A1/A2 polarization-VEGF/BDNF pathway" plays a crucial role in promoting neurovascular remodeling, axonal and dendritic regeneration, and synaptic plasticity, thereby contributing to functional recovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VNS 通过 NMU-NMUR2 通路调节星形胶质细胞的 A1/A2 极化,从而促进缺血再灌注损伤后神经功能的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
期刊最新文献
Previous strength training attenuates ouabain-induced bipolar disorder-related behaviors and memory deficits in rats: involvement of hippocampal ERK/CREB and PI3K/AKT/mTOR pathways. Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors. Neurosteroids and Translocator Protein (TSPO) in neuroinflammation. VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway. Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1