Maciej Adam Dybizbański, Katarzyna Rzeszut, Saydiolimkhon Abdusattarkhuja, Zheng Li
{"title":"Determination of Strength Parameters of Composite Reinforcement Consisting of Steel Member, Adhesive, and Carbon Fiber Textile.","authors":"Maciej Adam Dybizbański, Katarzyna Rzeszut, Saydiolimkhon Abdusattarkhuja, Zheng Li","doi":"10.3390/ma17236022","DOIUrl":null,"url":null,"abstract":"<p><p>The main aim of the study was the determination of the strength parameters of composite bonded joints consisting of galvanised steel elements, an adhesive layer, and Carbon-Fiber-Reinforced Plastic (CFRP) fabric. For this purpose, shear laboratory tests were carried out on 60 lapped specimens composed of 2 mm thick hot-dip galvanised steel plates of S350 GD. The specimens were overlapped on one side with SikaWrap 230 C carbon fibre textile (CFT) using SikaDur 330 adhesive. The tests were carried out in three series that differed in overlap length (15 mm, 25 mm, and 35 mm). A discussion on the failure mechanism in the context of the bonding capacity of the composite joint was carried out. We observed three forms of joint damage, namely, at the steel-adhesive interface, fibre rupture, and mixed damage behaviour. Moreover, an advanced numerical model using the commercial finite element (FE) program ABAQUS/Standard and the coupled cohesive zone model was developed. The material behaviour of the textile was defined as elastic-lamina and the mixed-mode Hashin damage model was implemented with bi-linear behaviour. Special attention was focused on the formulation of reliable methodologies to determine the load-bearing capacity, failure mechanisms, stress distribution, and the strength characteristics of a composite adhesive joint. In order to develop a reliable model, validation and verification were carried out and self-correlation parameters, which brought the model closer to the laboratory test, were proposed by the authors. Based on the conducted analysis, the strength characteristics including the load-bearing capacity, failure mechanisms, and stress distribution were established. The three forms of joint damage were observed as steel-adhesive interface failure, fibre rupture, and mixed-damage behaviour. Complex interactions between the materials were observed. The most dangerous adhesive failure was detected at the steel and adhesive interface. It was also found that an increase in adhesive thickness caused a decrease in joint strength. In the numerical analysis, two mechanical models were employed, namely, a sophisticated model of adhesive and fabric components. It was found that the fabric model was very sensitive to the density of the finite element mesh. It was also noticed that the numerical model referring to the adhesive layer was nonsensitive to the mesh size; thus, it was regarded as appropriate. Nevertheless, in order to increase the reliability of the numerical model, the authors proposed their own correlation coefficients α and β, which allowed for the correct mapping of adhesive damage.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17236022","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The main aim of the study was the determination of the strength parameters of composite bonded joints consisting of galvanised steel elements, an adhesive layer, and Carbon-Fiber-Reinforced Plastic (CFRP) fabric. For this purpose, shear laboratory tests were carried out on 60 lapped specimens composed of 2 mm thick hot-dip galvanised steel plates of S350 GD. The specimens were overlapped on one side with SikaWrap 230 C carbon fibre textile (CFT) using SikaDur 330 adhesive. The tests were carried out in three series that differed in overlap length (15 mm, 25 mm, and 35 mm). A discussion on the failure mechanism in the context of the bonding capacity of the composite joint was carried out. We observed three forms of joint damage, namely, at the steel-adhesive interface, fibre rupture, and mixed damage behaviour. Moreover, an advanced numerical model using the commercial finite element (FE) program ABAQUS/Standard and the coupled cohesive zone model was developed. The material behaviour of the textile was defined as elastic-lamina and the mixed-mode Hashin damage model was implemented with bi-linear behaviour. Special attention was focused on the formulation of reliable methodologies to determine the load-bearing capacity, failure mechanisms, stress distribution, and the strength characteristics of a composite adhesive joint. In order to develop a reliable model, validation and verification were carried out and self-correlation parameters, which brought the model closer to the laboratory test, were proposed by the authors. Based on the conducted analysis, the strength characteristics including the load-bearing capacity, failure mechanisms, and stress distribution were established. The three forms of joint damage were observed as steel-adhesive interface failure, fibre rupture, and mixed-damage behaviour. Complex interactions between the materials were observed. The most dangerous adhesive failure was detected at the steel and adhesive interface. It was also found that an increase in adhesive thickness caused a decrease in joint strength. In the numerical analysis, two mechanical models were employed, namely, a sophisticated model of adhesive and fabric components. It was found that the fabric model was very sensitive to the density of the finite element mesh. It was also noticed that the numerical model referring to the adhesive layer was nonsensitive to the mesh size; thus, it was regarded as appropriate. Nevertheless, in order to increase the reliability of the numerical model, the authors proposed their own correlation coefficients α and β, which allowed for the correct mapping of adhesive damage.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.