Sachin Phogat, Sriharsha V Lankireddy, Saikrishna Lekkala, Varsha C Anche, Venkateswara R Sripathi, Gunvant B Patil, Naveen Puppala, Madhusudhana R Janga
{"title":"Progress in genetic engineering and genome editing of peanuts: revealing the future of crop improvement.","authors":"Sachin Phogat, Sriharsha V Lankireddy, Saikrishna Lekkala, Varsha C Anche, Venkateswara R Sripathi, Gunvant B Patil, Naveen Puppala, Madhusudhana R Janga","doi":"10.1007/s12298-024-01534-6","DOIUrl":null,"url":null,"abstract":"<p><p>Peanut (<i>Arachis hypogaea</i> L.), also known as groundnut, is cultivated globally and is a widely consumed oilseed crop. Its nutritional composition and abundance in lipids, proteins, vitamins, and essential mineral elements position it as a nutritious food in various forms across the globe, ranging from nuts and confections to peanut butter. Cultivating peanuts provides significant challenges due to abiotic and biotic stress factors and health concerns linked to their consumption, including aflatoxins and allergens. These factors pose risks not only to human health but also to the long-term sustainability of peanut production. Conventional methods, such as traditional and mutation breeding, are time-consuming and do not provide desired genetic variations for peanut improvement. Fortunately, recent advancements in next-generation sequencing and genome editing technologies, coupled with the availability of the complete genome sequence of peanuts, offer promising opportunities to discover novel traits and enhance peanut productivity through innovative biotechnological approaches. In addition, these advancements create opportunities for developing peanut varieties with improved traits, such as increased resistance to pests and diseases, enhanced nutritional content, reduced levels of toxins, anti-nutritional factors and allergens, and increased overall productivity. To achieve these goals, it is crucial to focus on optimizing peanut transformation techniques, genome editing methodologies, stress tolerance mechanisms, functional validation of key genes, and exploring potential applications for peanut improvement. This review aims to illuminate the progress in peanut genetic engineering and genome editing. By closely examining these advancements, we can better understand the developments achieved in these areas.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"30 11","pages":"1759-1775"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01534-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Peanut (Arachis hypogaea L.), also known as groundnut, is cultivated globally and is a widely consumed oilseed crop. Its nutritional composition and abundance in lipids, proteins, vitamins, and essential mineral elements position it as a nutritious food in various forms across the globe, ranging from nuts and confections to peanut butter. Cultivating peanuts provides significant challenges due to abiotic and biotic stress factors and health concerns linked to their consumption, including aflatoxins and allergens. These factors pose risks not only to human health but also to the long-term sustainability of peanut production. Conventional methods, such as traditional and mutation breeding, are time-consuming and do not provide desired genetic variations for peanut improvement. Fortunately, recent advancements in next-generation sequencing and genome editing technologies, coupled with the availability of the complete genome sequence of peanuts, offer promising opportunities to discover novel traits and enhance peanut productivity through innovative biotechnological approaches. In addition, these advancements create opportunities for developing peanut varieties with improved traits, such as increased resistance to pests and diseases, enhanced nutritional content, reduced levels of toxins, anti-nutritional factors and allergens, and increased overall productivity. To achieve these goals, it is crucial to focus on optimizing peanut transformation techniques, genome editing methodologies, stress tolerance mechanisms, functional validation of key genes, and exploring potential applications for peanut improvement. This review aims to illuminate the progress in peanut genetic engineering and genome editing. By closely examining these advancements, we can better understand the developments achieved in these areas.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.