{"title":"Human activity recognition utilizing optimized attention induced Multihead Convolutional Neural Network with Mobile Net V1 from Mobile health data.","authors":"R Anandha Praba, L Suganthi","doi":"10.1080/0954898X.2024.2438967","DOIUrl":null,"url":null,"abstract":"<p><p>Human Activity Recognition (HAR) systems are designed to continuously monitor human behaviour, mainly in the areas of entertainment and surveillance in intelligent home environments. In this manuscript, Human Activity Recognition utilizing optimized Attention Induced Multi head Convolutional Neural Network with Mobile Net V1 from Mobile Health Data (HAR-AMCNN-MNV1) is proposed. The input data is collected through MHEALTH and UCI HAR datasets. Neural Spectrospatial Filtering (NSF) is used for avoiding accurate labelling and reduces errors. Afterwards, Variational Density Peak Clustering Algorithm (VDPCA) is used for segmenting the data. Feature Extraction and Classification is done by Attention Induced Multi head Convolutional Neural Network with Mobile Net V1 (AMCNN-MNV1). AMCNN is used for extracting Hand-crafted features. AMCNN-MNV1 effectively classifies the human activities as Sitting and relaxing (Sit), Climbing stairs (CS), Walking (Walk), Standing still (Std), Waist bends forward (WBF), Frontal elevation of arms (FEA), Jogging (Jog), Knees bending (crouching) (KB), Cycling (Cycl), Lying down (Lay), Jump front & back (JFB) and Running (Run). Siberian Tiger Optimization Algorithm (STOA) is proposed to optimize the weight parameter of AMCNN-MNV1 classifier. The proposed method attains 21.19%, 23.45%, and 21.76% higher accuracy, 31.15%, 24.65% and 22.72% higher precision; 21.15%, 20.18%, and 21.28% higher recall evaluated to the existing methods.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2438967","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Human Activity Recognition (HAR) systems are designed to continuously monitor human behaviour, mainly in the areas of entertainment and surveillance in intelligent home environments. In this manuscript, Human Activity Recognition utilizing optimized Attention Induced Multi head Convolutional Neural Network with Mobile Net V1 from Mobile Health Data (HAR-AMCNN-MNV1) is proposed. The input data is collected through MHEALTH and UCI HAR datasets. Neural Spectrospatial Filtering (NSF) is used for avoiding accurate labelling and reduces errors. Afterwards, Variational Density Peak Clustering Algorithm (VDPCA) is used for segmenting the data. Feature Extraction and Classification is done by Attention Induced Multi head Convolutional Neural Network with Mobile Net V1 (AMCNN-MNV1). AMCNN is used for extracting Hand-crafted features. AMCNN-MNV1 effectively classifies the human activities as Sitting and relaxing (Sit), Climbing stairs (CS), Walking (Walk), Standing still (Std), Waist bends forward (WBF), Frontal elevation of arms (FEA), Jogging (Jog), Knees bending (crouching) (KB), Cycling (Cycl), Lying down (Lay), Jump front & back (JFB) and Running (Run). Siberian Tiger Optimization Algorithm (STOA) is proposed to optimize the weight parameter of AMCNN-MNV1 classifier. The proposed method attains 21.19%, 23.45%, and 21.76% higher accuracy, 31.15%, 24.65% and 22.72% higher precision; 21.15%, 20.18%, and 21.28% higher recall evaluated to the existing methods.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.