Multiagent DDOS attack detection model: Optimal trained hybrid classifier and entropy-based mitigation process.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-12-17 DOI:10.1080/0954898X.2024.2412674
Thiruselvan Palusamy, Balasubramanian Chelliah
{"title":"Multiagent DDOS attack detection model: Optimal trained hybrid classifier and entropy-based mitigation process.","authors":"Thiruselvan Palusamy, Balasubramanian Chelliah","doi":"10.1080/0954898X.2024.2412674","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a novel multi-agent system designed to detect Distributed Denial of Service (DDoS) attacks, addressing the increasing need for robust cybersecurity measures. The hypothesis posits that a structured multi-agent approach can enhance detection accuracy and response efficiency in DDoS attack scenarios. The methodology involves a five-stage detection model: (1) Preprocessing using a modified double sigmoid normalization technique to eliminate duplicate data; (2) Feature Extraction where raw data and improved correlation-based features, mutual information, and statistical features are identified; (3) Dimensionality Reduction conducted by a reducer agent to streamline the feature set; (4) Classification utilizing Deep Belief Networks (DBN), Bi-LSTM, and Deep Maxout models, with their weights optimally tuned using the hybrid optimization algorithm, WUJSO; and (5) Decision Making by the decision agent to ascertain the presence of attacks, followed by mitigation through modified entropy-based techniques. The results demonstrate that the proposed method achieves a detection accuracy of 0.953 at a learning rate of 90%, significantly outperforming other methods, including Bi-GRU (0.857), DEEP-MAXOUT (0.910), Bi-LSTM (0.865), RNN (0.814), NN (0.894), and DBN (0.761). This research underscores the effectiveness of the multi-agent approach in enhancing DDoS attack detection and mitigation.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-33"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2412674","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a novel multi-agent system designed to detect Distributed Denial of Service (DDoS) attacks, addressing the increasing need for robust cybersecurity measures. The hypothesis posits that a structured multi-agent approach can enhance detection accuracy and response efficiency in DDoS attack scenarios. The methodology involves a five-stage detection model: (1) Preprocessing using a modified double sigmoid normalization technique to eliminate duplicate data; (2) Feature Extraction where raw data and improved correlation-based features, mutual information, and statistical features are identified; (3) Dimensionality Reduction conducted by a reducer agent to streamline the feature set; (4) Classification utilizing Deep Belief Networks (DBN), Bi-LSTM, and Deep Maxout models, with their weights optimally tuned using the hybrid optimization algorithm, WUJSO; and (5) Decision Making by the decision agent to ascertain the presence of attacks, followed by mitigation through modified entropy-based techniques. The results demonstrate that the proposed method achieves a detection accuracy of 0.953 at a learning rate of 90%, significantly outperforming other methods, including Bi-GRU (0.857), DEEP-MAXOUT (0.910), Bi-LSTM (0.865), RNN (0.814), NN (0.894), and DBN (0.761). This research underscores the effectiveness of the multi-agent approach in enhancing DDoS attack detection and mitigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本研究提出了一种新型多代理系统,旨在检测分布式拒绝服务(DDoS)攻击,满足对稳健网络安全措施日益增长的需求。假设认为,结构化的多代理方法可以提高 DDoS 攻击场景中的检测准确性和响应效率。该方法包括一个五阶段检测模型:(1) 使用改进的双sigmoid归一化技术进行预处理,以消除重复数据;(2) 特征提取,确定原始数据和改进的基于相关性的特征、互信息和统计特征;(3) 由降维代理进行降维,以精简特征集;(4) 利用深度信念网络 (DBN)、Bi-LSTM 和深度 Maxout 模型进行分类,并使用混合优化算法 WUJSO 对其权重进行优化调整;以及 (5) 由决策代理做出决策,以确定是否存在攻击,然后通过修改后的基于熵的技术进行缓解。结果表明,在学习率为 90% 的情况下,所提出的方法达到了 0.953 的检测准确率,明显优于其他方法,包括 Bi-GRU (0.857)、DEEP-MAXOUT (0.910)、Bi-LSTM (0.865)、RNN (0.814)、NNN (0.894) 和 DBN (0.761)。这项研究强调了多代理方法在增强 DDoS 攻击检测和缓解方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Human activity recognition utilizing optimized attention induced Multihead Convolutional Neural Network with Mobile Net V1 from Mobile health data. Multiagent DDOS attack detection model: Optimal trained hybrid classifier and entropy-based mitigation process. Design of a neural transformer for Spanish to Mexican Sign Language automatic translation/interpretation. ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images. Modified ensemble machine learning-based plant leaf disease detection model with optimized K-Means clustering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1