Construction of hierarchical yolk-shell Fe@SiO2@NC composites with dual impedance matching layers and dual built-in electric fields for efficient electromagnetic wave absorption

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-18 DOI:10.1016/j.jmst.2024.11.038
Hongwei Cong, Houjiang Liu, Jiawei Ding, Yuanyuan Fu, Jin Cui, Chuangchuang Gong, Chenxu Wang, Yijing Zhang, Chunnian He, Naiqin Zhao, Chunsheng Shi, Fang He
{"title":"Construction of hierarchical yolk-shell Fe@SiO2@NC composites with dual impedance matching layers and dual built-in electric fields for efficient electromagnetic wave absorption","authors":"Hongwei Cong, Houjiang Liu, Jiawei Ding, Yuanyuan Fu, Jin Cui, Chuangchuang Gong, Chenxu Wang, Yijing Zhang, Chunnian He, Naiqin Zhao, Chunsheng Shi, Fang He","doi":"10.1016/j.jmst.2024.11.038","DOIUrl":null,"url":null,"abstract":"The composites prepared by combining lightweight carbon materials with magnetic metals have demonstrated excellent dielectric and magnetic properties, indicating potential applications in the field of electromagnetic wave (EMW) absorption. However, the rational microstructure design and component optimization of these composites in regulating their magnetic-dielectric balance to achieve high-performance EMW absorption remains challenging. Herein, hierarchical yolk-shell Fe@SiO<sub>2</sub>@NC composites with dual impedance matching layers and dual built-in electric fields were prepared by self-template aggregation and in situ reduction strategies. The introduction of a SiO<sub>2</sub> wave-transparent layer into a conventional dielectric-magnetic system has resulted in the successful realization of nanoscale precise impedance matching regulation in absorbers, thereby enabling effective ultra-wideband EMW absorption. The dual impedance matching layers of the internal void layer and the SiO<sub>2</sub> wave-transparent layer facilitate multiple scattering and reflection of EMWs within the absorbers, and the dual built-in electric fields of Fe/SiO<sub>2</sub> and SiO<sub>2</sub>/NC can effectively enhance interfacial polarization effect to attenuate EMWs. The predominantly optimized Fe@SiO<sub>2</sub>@NC-2 exhibits an ultra-wide effective absorption bandwidth (EAB) of 7.10 GHz and an impressive minimum reflection loss (RL<sub>min</sub>) of −64.83 dB, indicating that optimizing the impedance matching via quantitative design can maximize the EMW absorption performance. This work provides a straightforward yet effective approach for constructing multi-component materials with hierarchical yolk-shell structure, which offers valuable insight into the microstructure design and component optimization of innovative EMW absorption materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"90 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.038","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The composites prepared by combining lightweight carbon materials with magnetic metals have demonstrated excellent dielectric and magnetic properties, indicating potential applications in the field of electromagnetic wave (EMW) absorption. However, the rational microstructure design and component optimization of these composites in regulating their magnetic-dielectric balance to achieve high-performance EMW absorption remains challenging. Herein, hierarchical yolk-shell Fe@SiO2@NC composites with dual impedance matching layers and dual built-in electric fields were prepared by self-template aggregation and in situ reduction strategies. The introduction of a SiO2 wave-transparent layer into a conventional dielectric-magnetic system has resulted in the successful realization of nanoscale precise impedance matching regulation in absorbers, thereby enabling effective ultra-wideband EMW absorption. The dual impedance matching layers of the internal void layer and the SiO2 wave-transparent layer facilitate multiple scattering and reflection of EMWs within the absorbers, and the dual built-in electric fields of Fe/SiO2 and SiO2/NC can effectively enhance interfacial polarization effect to attenuate EMWs. The predominantly optimized Fe@SiO2@NC-2 exhibits an ultra-wide effective absorption bandwidth (EAB) of 7.10 GHz and an impressive minimum reflection loss (RLmin) of −64.83 dB, indicating that optimizing the impedance matching via quantitative design can maximize the EMW absorption performance. This work provides a straightforward yet effective approach for constructing multi-component materials with hierarchical yolk-shell structure, which offers valuable insight into the microstructure design and component optimization of innovative EMW absorption materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有双阻抗匹配层和双内置电场的蛋黄-壳层Fe@SiO2@NC复合材料的高效电磁波吸收
将轻质碳材料与磁性金属结合制备的复合材料具有优异的介电性能和磁性能,表明其在电磁波(EMW)吸收领域具有潜在的应用前景。然而,如何合理设计这些复合材料的微观结构并优化其成分,以调节其磁介质平衡,从而实现高性能电磁波吸收仍然是一项挑战。本文通过自模板聚集和原位还原策略制备了具有双阻抗匹配层和双内置电场的分层卵壳 Fe@SiO2@NC 复合材料。将二氧化硅透波层引入传统的电介质-磁性系统,成功实现了吸收体纳米级精确阻抗匹配调节,从而实现了有效的超宽带电磁波吸收。内部空隙层和 SiO2 透波层的双阻抗匹配层可促进电磁波在吸收体中的多重散射和反射,Fe/SiO2 和 SiO2/NC 的双内置电场可有效增强界面极化效应,从而衰减电磁波。主要优化的 Fe@SiO2@NC-2 具有 7.10 GHz 的超宽有效吸收带宽(EAB)和令人印象深刻的 -64.83 dB 最小反射损耗(RLmin),表明通过定量设计优化阻抗匹配可以最大限度地提高电磁波吸收性能。这项研究为构建具有分层卵壳结构的多组分材料提供了一种简单而有效的方法,为创新电磁波吸收材料的微结构设计和组分优化提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Hybrid heat-source solid-state additive manufacturing: A method to fabricate high performance AA6061 deposition Microstructural effects on shock-induced deformation behavior in CoCrNi medium-entropy alloy: A molecular dynamics study New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1