Hybrid heat-source solid-state additive manufacturing: A method to fabricate high performance AA6061 deposition

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-29 DOI:10.1016/j.jmst.2024.11.079
Qian Qiao, Chan Wa Tam, Wai I Lam, Kaiyuan Wang, Dawei Guo, Chi Tat Kwok, Yongyong Lin, Guoshun Yang, Hongchang Qian, Dawei Zhang, Xiaogang Li, Lap Mou Tam
{"title":"Hybrid heat-source solid-state additive manufacturing: A method to fabricate high performance AA6061 deposition","authors":"Qian Qiao, Chan Wa Tam, Wai I Lam, Kaiyuan Wang, Dawei Guo, Chi Tat Kwok, Yongyong Lin, Guoshun Yang, Hongchang Qian, Dawei Zhang, Xiaogang Li, Lap Mou Tam","doi":"10.1016/j.jmst.2024.11.079","DOIUrl":null,"url":null,"abstract":"An approach called hybrid heat-source solid-state additive manufacturing (HHSAM) for fabricating multilayer AA6061 depositionwith superior properties is proposed in this paper. As compared with the traditional additive friction stir deposition (AFSD), the auxiliary induction heat-source in HHSAM effectively improves the temperature and fluidity of plastic flow, which facilitates the formation and enrichment of residual Mg<sub>2</sub>Si phases besides Al(Fe,Mn)Si, promotes the dynamic recrystallization and increases the bonding strength between layers during the deposition process. Therefore, the HHSAM depositions possess a more uniform structure, superior integral mechanical properties and corrosion resistance after heat treatment process.Moreover, HHSAMed specimens avoid abnormal grain growth (AGG) in heat treatment process, which is regularly encountered in the traditional AFSD.HHSAM method is proved to be a new solid-state additive manufacturing method with good developing prospects for fabricating alloy production with excellent properties in a high-efficiency manner.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"29 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.079","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An approach called hybrid heat-source solid-state additive manufacturing (HHSAM) for fabricating multilayer AA6061 depositionwith superior properties is proposed in this paper. As compared with the traditional additive friction stir deposition (AFSD), the auxiliary induction heat-source in HHSAM effectively improves the temperature and fluidity of plastic flow, which facilitates the formation and enrichment of residual Mg2Si phases besides Al(Fe,Mn)Si, promotes the dynamic recrystallization and increases the bonding strength between layers during the deposition process. Therefore, the HHSAM depositions possess a more uniform structure, superior integral mechanical properties and corrosion resistance after heat treatment process.Moreover, HHSAMed specimens avoid abnormal grain growth (AGG) in heat treatment process, which is regularly encountered in the traditional AFSD.HHSAM method is proved to be a new solid-state additive manufacturing method with good developing prospects for fabricating alloy production with excellent properties in a high-efficiency manner.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Hybrid heat-source solid-state additive manufacturing: A method to fabricate high performance AA6061 deposition Microstructural effects on shock-induced deformation behavior in CoCrNi medium-entropy alloy: A molecular dynamics study New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1