Orbital dynamics in galactic potentials under mass transfer

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-12-17 DOI:10.1051/0004-6361/202348274
Eduárd Illés, Dániel Jánosi, Tamás Kovács
{"title":"Orbital dynamics in galactic potentials under mass transfer","authors":"Eduárd Illés, Dániel Jánosi, Tamás Kovács","doi":"10.1051/0004-6361/202348274","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Time-dependent potentials are common in galactic systems that undergo significant evolution, interactions, or encounters with other galaxies, or when there are dynamic processes such as star formation and merging events. Recent studies show that an ensemble approach along with the so-called snapshot framework in the theory of dynamical systems provide a powerful tool to analyze the time-dependent dynamics.<i>Aims.<i/> In this work, we aim to explore and quantify the phase space structure and dynamical complexity in time-dependent galactic potentials consisting of multiple components.<i>Methods.<i/> We applied the classical method of Poincaré surface of sections to analyze the phase space structure in a chaotic Hamiltonian system subjected to parameter drift. This, however, makes sense only when the evolution of a large ensemble of initial conditions is followed. Numerical simulations explore the phase space structure of such ensembles while the system undergoes a continuous parameter change. The pair-wise average distance of ensemble members allowed us to define a generalized Lyapunov exponent, which might also be time-dependent, to describe the system stability.<i>Results.<i/> We provide a comprehensive dynamical analysis of the system under circumstances where linear mass transfer occurs between the disk and bulge components of the model.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"30 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202348274","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Time-dependent potentials are common in galactic systems that undergo significant evolution, interactions, or encounters with other galaxies, or when there are dynamic processes such as star formation and merging events. Recent studies show that an ensemble approach along with the so-called snapshot framework in the theory of dynamical systems provide a powerful tool to analyze the time-dependent dynamics.Aims. In this work, we aim to explore and quantify the phase space structure and dynamical complexity in time-dependent galactic potentials consisting of multiple components.Methods. We applied the classical method of Poincaré surface of sections to analyze the phase space structure in a chaotic Hamiltonian system subjected to parameter drift. This, however, makes sense only when the evolution of a large ensemble of initial conditions is followed. Numerical simulations explore the phase space structure of such ensembles while the system undergoes a continuous parameter change. The pair-wise average distance of ensemble members allowed us to define a generalized Lyapunov exponent, which might also be time-dependent, to describe the system stability.Results. We provide a comprehensive dynamical analysis of the system under circumstances where linear mass transfer occurs between the disk and bulge components of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
MAGIS (Measuring Abundances of red super Giants with Infrared Spectroscopy) project Discovery of a cold giant planet and mass measurement of a hot super-Earth in the multi-planetary system WASP-132 Physical properties of newly active asteroid 2010 LH15 Inelastic H + H3+ collision rates and their impact on the determination of the excitation temperature of H3+ Asteroid detection polar equation calculation and graphical representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1