Inelastic H + H3+ collision rates and their impact on the determination of the excitation temperature of H3+

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-01-15 DOI:10.1051/0004-6361/202452977
Daniel Félix-González, Pablo del Mazo-Sevillano, Alfredo Aguado, Octavio Roncero, Jacques Le Bourlot, Evelyne Roueff, Franck Le Petit, Emeric Bron
{"title":"Inelastic H + H3+ collision rates and their impact on the determination of the excitation temperature of H3+","authors":"Daniel Félix-González, Pablo del Mazo-Sevillano, Alfredo Aguado, Octavio Roncero, Jacques Le Bourlot, Evelyne Roueff, Franck Le Petit, Emeric Bron","doi":"10.1051/0004-6361/202452977","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> In diffuse interstellar clouds, the excitation temperature derived from the lowest levels of H<sub>3<sub/><sup>+<sup/> is systematically lower than that derived from H<sub>2<sub/>. The differences may be attributed to the lack of state-specific formation and destruction rates of H<sub>3<sub/><sup>+<sup/>, which are needed to thermalize the two species.<i>Aims.<i/> In this work, we aim to investigate the possible influence of rotational excitation collisions of H<sub>3<sub/><sup>+<sup/> with atomic hydrogen on its excitation temperature.<i>Methods.<i/> We used a time-independent close-coupling method to calculate the state-to-state rate coefficients, incorporating a very accurate and full-dimensional potential energy surface recently developed for H<sub>4<sub/><sup>+<sup/>. We take a symmetric top approach to describe a frozen H<sub>3<sub/><sup>+<sup/> as an equilateral triangle.<i>Results.<i/> We derive rotational excitation collision rate coefficients of H<sub>3<sub/><sup>+<sup/> with atomic hydrogen in a temperature range corresponding to diffuse interstellar conditions up to (<i>J, K<i/>, ±) = (7, 6, +) and (<i>J, K<i/>, ±) = (6, 4, +) for its ortho and para forms. This allows us to obtain a consistent set of collisional excitation rate coefficients and to improve on a previous study that included speculations regarding these contributions.<i>Conclusions.<i/> The new state-specific inelastic H<sub>3<sub/><sup>+<sup/> + H rate coefficients yield differences of up to 20% in the excitation temperature, and their impact increases with decreasing molecular fraction. We also confirm the impact of chemical state-to-state destruction reactions on the excitation balance of H<sub>3<sub/><sup>+<sup/>, and that reactive H + H<sub>3<sub/><sup>+<sup/> collisions are also needed to account for possible further ortho to para transitions.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"45 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452977","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. In diffuse interstellar clouds, the excitation temperature derived from the lowest levels of H3+ is systematically lower than that derived from H2. The differences may be attributed to the lack of state-specific formation and destruction rates of H3+, which are needed to thermalize the two species.Aims. In this work, we aim to investigate the possible influence of rotational excitation collisions of H3+ with atomic hydrogen on its excitation temperature.Methods. We used a time-independent close-coupling method to calculate the state-to-state rate coefficients, incorporating a very accurate and full-dimensional potential energy surface recently developed for H4+. We take a symmetric top approach to describe a frozen H3+ as an equilateral triangle.Results. We derive rotational excitation collision rate coefficients of H3+ with atomic hydrogen in a temperature range corresponding to diffuse interstellar conditions up to (J, K, ±) = (7, 6, +) and (J, K, ±) = (6, 4, +) for its ortho and para forms. This allows us to obtain a consistent set of collisional excitation rate coefficients and to improve on a previous study that included speculations regarding these contributions.Conclusions. The new state-specific inelastic H3+ + H rate coefficients yield differences of up to 20% in the excitation temperature, and their impact increases with decreasing molecular fraction. We also confirm the impact of chemical state-to-state destruction reactions on the excitation balance of H3+, and that reactive H + H3+ collisions are also needed to account for possible further ortho to para transitions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
MAGIS (Measuring Abundances of red super Giants with Infrared Spectroscopy) project Discovery of a cold giant planet and mass measurement of a hot super-Earth in the multi-planetary system WASP-132 Physical properties of newly active asteroid 2010 LH15 Inelastic H + H3+ collision rates and their impact on the determination of the excitation temperature of H3+ Asteroid detection polar equation calculation and graphical representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1