{"title":"Intrinsic characteristics of grain boundary elimination induced by plastic deformation in front of intergranular microcracks in bcc iron","authors":"Zhifu Zhao, Yueguang Wei","doi":"10.1016/j.ijplas.2024.104208","DOIUrl":null,"url":null,"abstract":"Additive grain boundary (GB) engineering holds significant potential for developing materials and structures with excellent mechanical properties by precisely controlling GB structure. The GBs that can be eliminated by plastic behavior activities prior to crack cleavage are ideal special ones for resisting intergranular fracture. Through molecular dynamics simulation, this work constructs special boundaries and studies the intrinsic characteristics of GB elimination. The results show that GB elimination phenomenon significantly depends on crack growth direction and GB plane. The classical theory developed by Rice fails to identify the mechanisms of two dependent characteristics. According to shear forces on atoms at crack tip, this work finds that the dependence of GB elimination on crack growth direction is attributed to the change of atomic slip characteristics. GB elimination occurs in specific growth directions where atomic slip is driven by the system of <span><math><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><mn is=\"true\">1</mn><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mo is=\"true\">)</mo></mrow><mrow is=\"true\"><mo is=\"true\">[</mo><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">11</mn><mo is=\"true\">]</mo></mrow></mrow></math></span>. By considering <em>T</em> stress effect, GB elimination and its dependence on GB plane are well explained. The dependence of GB elimination on GB plane is attributed to the complex changes in critical stress intensity factors for twinning formation, perfect dislocation nucleation, and cleavage. GB elimination occurs on specific GBs where <em>T</em> stress makes the critical stress intensity factors for twinning and dislocation nucleation significantly lower than that for cleavage. The identified intrinsic characteristics of GB elimination provide references for GB design.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"64 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2024.104208","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Additive grain boundary (GB) engineering holds significant potential for developing materials and structures with excellent mechanical properties by precisely controlling GB structure. The GBs that can be eliminated by plastic behavior activities prior to crack cleavage are ideal special ones for resisting intergranular fracture. Through molecular dynamics simulation, this work constructs special boundaries and studies the intrinsic characteristics of GB elimination. The results show that GB elimination phenomenon significantly depends on crack growth direction and GB plane. The classical theory developed by Rice fails to identify the mechanisms of two dependent characteristics. According to shear forces on atoms at crack tip, this work finds that the dependence of GB elimination on crack growth direction is attributed to the change of atomic slip characteristics. GB elimination occurs in specific growth directions where atomic slip is driven by the system of . By considering T stress effect, GB elimination and its dependence on GB plane are well explained. The dependence of GB elimination on GB plane is attributed to the complex changes in critical stress intensity factors for twinning formation, perfect dislocation nucleation, and cleavage. GB elimination occurs on specific GBs where T stress makes the critical stress intensity factors for twinning and dislocation nucleation significantly lower than that for cleavage. The identified intrinsic characteristics of GB elimination provide references for GB design.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.