Hybridized mechanical and solar energy‑driven self‑powered system for high‑efficiency hydrogen peroxide production based on triboelectric nanogenerator
Ru Guo , Jialu Yuan , Qiong Liu , Hang Luo , Dou Zhang
{"title":"Hybridized mechanical and solar energy‑driven self‑powered system for high‑efficiency hydrogen peroxide production based on triboelectric nanogenerator","authors":"Ru Guo , Jialu Yuan , Qiong Liu , Hang Luo , Dou Zhang","doi":"10.1016/j.nanoen.2024.110592","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring cost-effective and environment-friendly technology for H<sub>2</sub>O<sub>2</sub> production is of great urgency toward net zero carbon emission. Hybridized mechanical and solar energy‑driven self‑powered H<sub>2</sub>O<sub>2</sub> production is a promising alternative to the traditional anthraquinone oxidation process to address high energy consumption, substantial organic waste generation, and toxic by-products. However, the low conversion efficiency of mechanical energy and the low-activity catalytic material are two main challenges of this method for high reaction efficiency. In this work, we construct a unique hybrid H<sub>2</sub>O<sub>2</sub> production system, which is composed of a rotatory disc-shaped triboelectric nanogenerator (TENG) converting mechanical energy into electrical energy and a catalytic reaction unit integrated with TiO<sub>2</sub>-BaTiO<sub>3</sub>-Ag nanowire array (TOBT-Ag) as photoanode. Particularly, an optimal matching design of the transformer in the management circuit boosts TENG's output current from 0.4 mA to 11.3 mA to supply sufficient electricity power for the electrocatalysis module. Moreover, the ultrafine Ag particle loaded on the TiO<sub>2</sub>-BaTiO<sub>3</sub> nanowire array is designed to enhance surface-active catalysis sites and lower the interfacial charge transfer barrier. As a result, the self-powered hybrid catalysis system achieves H<sub>2</sub>O<sub>2</sub> production as high as 29.55 μmol/L within 5 min. The successful integration of TENG and nanocatalyst in this work demonstrates an efficient route for the H<sub>2</sub>O<sub>2</sub> green production, providing an excellent paradigm for converting renewable natural energy sources into chemical energy.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"134 ","pages":"Article 110592"},"PeriodicalIF":16.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524013442","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring cost-effective and environment-friendly technology for H2O2 production is of great urgency toward net zero carbon emission. Hybridized mechanical and solar energy‑driven self‑powered H2O2 production is a promising alternative to the traditional anthraquinone oxidation process to address high energy consumption, substantial organic waste generation, and toxic by-products. However, the low conversion efficiency of mechanical energy and the low-activity catalytic material are two main challenges of this method for high reaction efficiency. In this work, we construct a unique hybrid H2O2 production system, which is composed of a rotatory disc-shaped triboelectric nanogenerator (TENG) converting mechanical energy into electrical energy and a catalytic reaction unit integrated with TiO2-BaTiO3-Ag nanowire array (TOBT-Ag) as photoanode. Particularly, an optimal matching design of the transformer in the management circuit boosts TENG's output current from 0.4 mA to 11.3 mA to supply sufficient electricity power for the electrocatalysis module. Moreover, the ultrafine Ag particle loaded on the TiO2-BaTiO3 nanowire array is designed to enhance surface-active catalysis sites and lower the interfacial charge transfer barrier. As a result, the self-powered hybrid catalysis system achieves H2O2 production as high as 29.55 μmol/L within 5 min. The successful integration of TENG and nanocatalyst in this work demonstrates an efficient route for the H2O2 green production, providing an excellent paradigm for converting renewable natural energy sources into chemical energy.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.