Finite volume method: a good match to airborne gravimetry?

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geodesy Pub Date : 2024-12-18 DOI:10.1007/s00190-024-01922-6
Xiaopeng Li, Robert Čunderlík, Marek Macák, Dana J. Caccamise, Zuzana Minarechová, Pavol Zahorec, Juraj Papčo, Daniel R. Roman, Jordan Krcmaric, Miao Lin
{"title":"Finite volume method: a good match to airborne gravimetry?","authors":"Xiaopeng Li, Robert Čunderlík, Marek Macák, Dana J. Caccamise, Zuzana Minarechová, Pavol Zahorec, Juraj Papčo, Daniel R. Roman, Jordan Krcmaric, Miao Lin","doi":"10.1007/s00190-024-01922-6","DOIUrl":null,"url":null,"abstract":"<p>Numerical methods, like the finite element method (FEM) or finite volume method (FVM), are widely used to provide solutions in many boundary value problems. In previous studies, these numerical methods have also been applied in geodesy but demanded extensive computations because the upper boundary condition was usually set up at the satellite orbit level, hundreds of kilometers above the Earth. The relatively large distances between the lower boundary of the Earth's surface and the upper boundary exacerbate the computation loads because of the required discretization in between. Considering that many areas, such as the US, have uniformly distributed airborne gravity data just a few kilometers above the topography, we adapt the upper boundary from the satellite orbit level to the mean flight level of the airborne gravimetry. The significant decrease in the domain of solution dramatically reduces the large computation demand for FEM or FVM. This paper demonstrates the advantages of using FVM in the decreased domain in simulated and actual field cases in study areas of interest. In the simulated case, the FVM numerical results show that precision improvement of about an order of magnitude can be obtained when moving the upper boundary from 250 to 10 km, the upper altitude of the GRAV-D flights. A 2–3 cm level of accurate quasi-geoid model can be obtained for the actual datasets depending on different schemes used to model the topographic mass. In flat areas, the FVM solution can reach to about 1 cm precision, which is comparable with the counterparts from classical methods. The paper also demonstrates how to find the upper boundary if no airborne data are available. Finally, the numerical method provides a 3D discrete representation of the entire local gravity field instead of a surface solution, a (quasi) geoid model.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"47 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01922-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical methods, like the finite element method (FEM) or finite volume method (FVM), are widely used to provide solutions in many boundary value problems. In previous studies, these numerical methods have also been applied in geodesy but demanded extensive computations because the upper boundary condition was usually set up at the satellite orbit level, hundreds of kilometers above the Earth. The relatively large distances between the lower boundary of the Earth's surface and the upper boundary exacerbate the computation loads because of the required discretization in between. Considering that many areas, such as the US, have uniformly distributed airborne gravity data just a few kilometers above the topography, we adapt the upper boundary from the satellite orbit level to the mean flight level of the airborne gravimetry. The significant decrease in the domain of solution dramatically reduces the large computation demand for FEM or FVM. This paper demonstrates the advantages of using FVM in the decreased domain in simulated and actual field cases in study areas of interest. In the simulated case, the FVM numerical results show that precision improvement of about an order of magnitude can be obtained when moving the upper boundary from 250 to 10 km, the upper altitude of the GRAV-D flights. A 2–3 cm level of accurate quasi-geoid model can be obtained for the actual datasets depending on different schemes used to model the topographic mass. In flat areas, the FVM solution can reach to about 1 cm precision, which is comparable with the counterparts from classical methods. The paper also demonstrates how to find the upper boundary if no airborne data are available. Finally, the numerical method provides a 3D discrete representation of the entire local gravity field instead of a surface solution, a (quasi) geoid model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
期刊最新文献
Regional sea level budget around Taiwan and Philippines over 2002‒2021 inferred from GRACE, altimetry, and in-situ hydrographic data Finite volume method: a good match to airborne gravimetry? A generalized least-squares filter designed for GNSS data processing A short note on GIA related surface gravity versus height changes in Fennoscandia LARES-2 contribution to global geodetic parameters from the combined LAGEOS-LARES solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1