Infrared imaging with visible light in microfluidic devices: the water absorption barrier

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2024-12-18 DOI:10.1039/d4an01201a
Mona Suryana, Thomas Produit, Hongzhi Yang, Giovanni Birarda, Jegan Vishnuwardhana Shanmugar, Leonid Krivitsky, Anna Paterova, Gianluca Grenci
{"title":"Infrared imaging with visible light in microfluidic devices: the water absorption barrier","authors":"Mona Suryana, Thomas Produit, Hongzhi Yang, Giovanni Birarda, Jegan Vishnuwardhana Shanmugar, Leonid Krivitsky, Anna Paterova, Gianluca Grenci","doi":"10.1039/d4an01201a","DOIUrl":null,"url":null,"abstract":"Infrared spectro-microscopy is a powerful technique for analysing chemical maps of cells and tissues for biomedical and clinical applications, yet the strong water absorption in the mid-infrared region is a challenge to overcome, as it overlaps with the spectral fingerprints of biological components. Microfluidic chips offer ultimate control over the water layer thickness and are increasingly used in infrared spectro-microscopy. However, the actual impact of the water layer thickness on the instrument's performance is often left to the experimentalist's intuition and the peculiarities of specific instruments. Aiming to experimentally test the amount of absorption introduced by water with varying layer thicknesses, we fabricated a set of microfluidic devices with three controlled chamber thicknesses, each comprising a simple test pattern made of a well-known photoresist SU-8. We employed two infrared spectro-microscopy methods for measurements. The first method involves using a standard FTIR microscope with a benchtop infrared light source. The second method is a quantum infrared microscopy technique, where infrared imaging is achieved by detecting correlated photons in the visible range. We demonstrated that both methods enable the measurement of the absorption spectrum in the mid-IR region, even in the presence of up to a 30 μm thick water layer on top of a sample pattern. Additionally, the Q-IR technique offers practical advantages over synchrotron-based FTIR, such as reduced complexity, cost, and ease of operation.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"20 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an01201a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared spectro-microscopy is a powerful technique for analysing chemical maps of cells and tissues for biomedical and clinical applications, yet the strong water absorption in the mid-infrared region is a challenge to overcome, as it overlaps with the spectral fingerprints of biological components. Microfluidic chips offer ultimate control over the water layer thickness and are increasingly used in infrared spectro-microscopy. However, the actual impact of the water layer thickness on the instrument's performance is often left to the experimentalist's intuition and the peculiarities of specific instruments. Aiming to experimentally test the amount of absorption introduced by water with varying layer thicknesses, we fabricated a set of microfluidic devices with three controlled chamber thicknesses, each comprising a simple test pattern made of a well-known photoresist SU-8. We employed two infrared spectro-microscopy methods for measurements. The first method involves using a standard FTIR microscope with a benchtop infrared light source. The second method is a quantum infrared microscopy technique, where infrared imaging is achieved by detecting correlated photons in the visible range. We demonstrated that both methods enable the measurement of the absorption spectrum in the mid-IR region, even in the presence of up to a 30 μm thick water layer on top of a sample pattern. Additionally, the Q-IR technique offers practical advantages over synchrotron-based FTIR, such as reduced complexity, cost, and ease of operation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
期刊最新文献
Handheld biofluorometric system for acetone in the exhaled breath condensates Light activated nanocomposite thin sheet for high throughput contactless biomolecular delivery into hard-to-transfect cells Label-free miRNA fluorescent biosensor based on duplex-specific nucleases and silver nanoclusters Infrared imaging with visible light in microfluidic devices: the water absorption barrier Shedding New Light on the Hidden Complexity of Seeds: Chemically Selective Imaging of Seed Coats with Stimulated Raman Scattering Microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1